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The analysis of Affymetrix GeneChip R© data is a complex, multistep process. Most often, meth-

ods condense the multiple probe level intensities into single probeset level measures (such as ro-

bust multi-chip average (RMA), dChip and Microarray Suite version 5.0 (MAS5)), which are then

followed by application of statistical tests to determine which genes are differentially expressed.

An alternative approach is a probe-level analysis, which tests for differential expression directly

using the probe-level data. Probe-level models offer the potential advantage of more accurately

capturing sources of variation in microarray experiments. However, this has not been thoroughly

investigated, since current research efforts have largely focused on the development of improved

expression summary methods. This research project will review current approaches to analysis of

probe-level data and discuss extensions of two examples, the S-Score and the Random Variance
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Model (RVM). The S-Score is a probe-level algorithm based on an error model in which the

detected signal is proportional to the probe pair signal for highly expressed genes, but approaches

a background level (rather than 0) for genes with low levels of expression. Initial results with the

S-Score have been promising, but the method has been limited to two-chip comparisons. This

project presents extensions to the S-Score that permit comparisons of multiple chips and “bor-

rowing” of information across probes to increase statistical power. The RVM is a probeset-level

algorithm that models the variance of the probeset intensities as a random sample from a common

distribution to “borrow” information across genes. This project presents extensions to the RVM

for probe-level data, using multivariate statistical theory to model the covariance among probes in

a probeset. Both of these methods show the advantages of probe-level, rather than probeset-level,

analysis in detecting differential gene expression for Affymetrix GeneChip data. Future research

will focus on refining the probe-level models of both the S-Score and RVM algorithms to increase

the sensitivity and specificity of microarray experiments.
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Chapter 1

Introduction

1.1 Overview of Microarray Technology

The development of microarray chips has had a profound impact on the design of gene expression

studies (Shi et al., 2006). Microarrays allow the large-scale analysis of expression changes across

thousands of genes at once, in contrast to previous small-scale methods that were restricted to

examining the expression of only a few genes at a time. Advances in technology have led to chips

that are essentially capable of analyzing expression values across the entire genome simultane-

ously (Dalma-Weiszhausz et al., 2006).

1.1.1 cDNA Array Design

Microarrays are broadly divided into two categories, custom spotted or complementary deoxyri-

bonucleic acid (cDNA) arrays and oligonucleotide arrays (Nguyen et al., 2002). The former are

designed by synthesizing complementary probes to messenger ribonucleic acid (mRNA) obtained

from biological samples using reverse transcription (Schena et al., 1995), as shown in Figure 1.1.

For custom spotted arrays, segments from genes of interest are amplified using the polymerase

chain reaction (PCR) to attain sufficient quantities of deoxyribonucleic acid (DNA). These DNA

fragments are then placed on glass microscope slides or a similar substrate in a high-density grid

pattern using a robotic pin arrayer or inkjet printer. The instrumentation is relatively inexpensive

compared to that needed for oligonucleotide chips, so cDNA arrays may be produced by local

1
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Figure 1.1: Overview of cDNA Array synthesis. DNA fragments are created using PCR and
bound to glass microscope slides. These DNA fragments hybridize to complementary targets
from samples. Image courtesy of Science Creative Quarterly (http://scq.ubc.ca), Jiang Long,
artist.

laboratories or obtained commercially (Hardiman, 2004; Hager, 2006). Next, mRNA from two

samples, one representing the experimental condition and one representing the control condition,

are extracted and reverse transcribed into cDNA. The cDNA is labeled with fluorescent dye; by

convention, Cyanine 5 (Cy5, a red fluorescent dye) is used for the experimental condition and

Cyanine 3 (Cy3, a green fluorescent dye) is used for the control condition. The two samples are

then mixed in equal proportion and hybridized to the array. The array is then imaged using a

fluorescent scanner, with separate images collected for the red and green channels. The relative

signal intensity between the two channels is assumed to be proportional to the relative abundance

of the gene sequence of interest in the two samples (Duggan et al., 1999).

http://scq.ubc.ca
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1.1.2 Oligonucleotide Array Design

Oligonucleotide microarrays are designed by chemically synthesizing small nucleotide fragments

with a predefined sequence (Lipshutz et al., 1999). The Affymetrix GeneChip R© oligonucleotide

microarray is one of the most widely used and best standardized platforms for large-scale analysis

of gene expression data (Wu et al., 2004), although other platforms are available (Fan et al., 2006;

Wolber et al., 2006; Shi et al., 2006; Singh-Gasson et al., 1999). An overview of GeneChip

manufacture can be found in Dalma-Weiszhausz et al. (2006) and is shown in Figure 1.2. The

basic unit for GeneChip design is a probe, a single 25-mer intended to hybridize with a specific

transcript of a specific gene, which is called the target sequence. The target sequence reported

by Affymetrix represents a “consensus” sequence for a particular gene, using information derived

from public repositories and other sources (Alberts et al., 2007). Target sequences are intended

to be unique for a particular gene; however, it is recognized that this does not hold for a number

of targets (Stalteri and Harrison, 2007; Gautier et al., 2004). A complete list of target sequences

for current and past varieties of GeneChips is available at the Affymetrix website (http://www.

affymetrix.com).

GeneChips containing complementary probes to the target sequences are constructed using

photolithography (Dalma-Weiszhausz et al., 2006). For this process, quartz wafers are modified

with silane material to allow covalent attachment of nucleosides to the chip. A photolithographic

mask containing windows to permit the transmission of ultraviolet light is then aligned with the

wafer. The windows on the mask are spatially distributed over the mask to correspond to the se-

quence for each probe. The application of near-ultraviolet light activates the exposed (windowed)

areas of the wafer for nucleoside bonding, while unexposed areas remain protected (Figure 1.3).

The wafer is then flushed with a nucleoside-containing solution, and the nucleoside attaches at the

activated sites. This process, which lengthens all activated probes by one nucleotide, alternates

through the four nucleosides (A, C, G, and T) repeatedly to create 25-mers with the appropriate

sequence in the appropriate spatial position on the wafer (Figure 1.4). Wafers are then diced and

packaged individually into cartridges (Figure 1.5).

http://www.affymetrix.com
http://www.affymetrix.com
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Figure 1.2: Overview of GeneChip synthesis. Nucleosides are progressively added to a silanized
chip by photolithography to create a set of 25-mers matching specific sequences. Image courtesy
of Science Creative Quarterly (http://scq.ubc.ca), Jiang Long, artist.

Figure 1.3: Activation of selected areas of a GeneChip using a photolithographic mask. Only
probes in activated areas (shown in yellow) will be extended by the next application of nucleoside
solution. Image courtesy of Affymetrix.

http://scq.ubc.ca
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Figure 1.4: Synthesis of probes occurs in cycles, in which activated cells are lengthened by one
nucleotide. Image courtesy of Affymetrix.

Figure 1.5: A completed GeneChip. Image courtesy of Affymetrix.
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Figure 1.6: Structure of a GeneChip. Image courtesy of Affymetrix.

Probes are synthesized in sets of two called probe pairs (Figure 1.6). Each pair consists of

a perfect match (PM) and a mismatch (MM) probe. The PM probe matches the target sequence

exactly and is intended to measure specific signal for a particular gene. The MM probe has

an inversion at the middle (13th) base and is intended to measure nonspecific binding of the

probe. Unfortunately, the PM probe may bind nonspecifically to other similar sequences (Wu and

Irizarry, 2005), and the MM probe may have a specific binding component to the target sequence

(Wu et al., 2004); both effects have significant implications for the analysis of microarray data.

A probe set consists of a group of 11 to 20 probe pairs, which are related by the fact that each

pair interrogates a region on the same gene (Figure 1.6). This level of redundancy in the pairs

of a probeset is intended to produce more accurate estimates of gene expression. There may be

one or more probesets interrogating the same gene. For current chips, the majority of genes have

only a single associated probeset. Finally, a GeneChip consists of thousands of probesets that

interrogate multiple genes (Figure 1.6).

With the commercial Affymetrix GeneChip, one array is used for each sample in the exper-

iment. The hybridization material for the arrays typically consists of mRNA isolated from the

study samples, although DNA fragments have also been used. When mRNA is the starting mate-

rial, a single strand of cDNA is produced through reverse transcription, followed by synthesis of
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a second strand to produce double-stranded cDNA. Such steps are not necessary with DNA as a

starting material. Next, an in vitro transcription (IVT) process is performed according to standard

molecular biology procedures (Van Gelder et al., 1990). This amplifies the target ribonucleic

acid (RNA) for subsequent hybridizations. The use of biotinylated nucleosides in the IVT reac-

tion allows subsequent detection of the target. The target RNA is then hybridized to the GeneChip

and stained with a streptavidin-phycoerythrin conjugate using standard protocols available from

Affymetrix (Affymetrix, 2002a). Following hybridization, the array is imaged using a fluorescent

scanner. The fluorescent signal intensity is assumed to be proportional to the abundance of the

target for each probe (Chudin et al., 2002).

1.1.3 Comparison of cDNA and Oligonucleotide Array Technologies

Oligonucleotide and cDNA technologies represent two different approaches to the quantification

of gene expression using microarrays. Recent studies have shown that the two are generally com-

parable in achieving this goal, and choice between platforms should be made based on other fac-

tors (Patterson et al., 2006). Oligonucleotide chips require that the entire sequence of the target be

known, while cDNA chips only require knowledge of the primer sequences for PCR (Hardiman,

2004). This can offer significant advantages in the study of less well characterized genes. The

cDNA arrays are more easily customized (Hager, 2006), although made-to-order oligonucleotide

chips are available (Dalma-Weiszhausz et al., 2006). The cost per array is substantially lower for

cDNA arrays, which may be produced using equipment available in most molecular biology lab-

oratories (Hager, 2006). However, cDNA arrays may require dye swap experiments to separate

dye effects from experimental effects, which may increase the number of arrays and offset any

cost savings (Dobbin et al., 2003). The quality of cDNA arrays that are not mass produced may

be inferior to that of commercial oligonucleotide chips (Hardiman, 2004). Finally, the choice be-

tween cDNA and oligonucleotide arrays can have a significant influence on experimental design

and analysis, as described in the next section.
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1.2 Experimental Design

1.2.1 Introduction

Study design plays a critical role in obtaining meaningful results from microarray experiments

(Reimers, 2005). It also has a significant influence on the selection and application of statistical

tests that are used in the analysis. Traditional statistical topics such as power, randomization, and

validation of model assumptions apply to microarray studies in a manner similar to biomedical

studies, although these areas may receive insufficient attention in the planning of microarray

experiments (Bolstad et al., 2004). However, microarray experiments also have unique features

not found in other types of studies, which are reviewed in this section. Detailed reviews of the

topic for both cDNA and oligonucleotide arrays may be found in Bolstad et al. (2004), Churchill

(2002), Kerr and Churchill (2001), and Simon et al. (2002).

One issue common to both cDNA and oligonucleotide arrays is replication (Allison et al.,

2006). Replication is essential for differentiating systematic variation due to treatment or phe-

notypic effects from chance variation (Lee, 2001). For microarray experiments, two types of

replicates are possible, technical and biological (Yang and Speed, 2002). Technical replication

occurs when RNA from the same extraction is hybridized to multiple chips. Biological replication

occurs when RNA from different extractions of the same sample is hybridized to multiple chips,

or when RNA from different samples within the same condition is hybridized to multiple chips.

The variability associated with biological replicates is generally greater than that with technical

replicates, as the variability between individuals (or extractions) is generally greater than variabil-

ity in the hybridization and processing of chips. Technical replicates reduce variability, but only

provide information about the variability within a particular extraction. In contrast, biological

replicates provide information about the variability between individuals (or extractions), mak-

ing the experimental results more generalizable. A combination of both technical and biological

replicates is ideal, but biological replicates are preferred over technical replicates for both cDNA

and microarray studies. Additional aspects of experimental design unique to each platform are
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reviewed in the following sections.

1.2.2 Experimental Design of cDNA Microarray Studies

With the hybridization of two samples on a single array, cDNA experiments are inherently com-

parative (Yang and Speed, 2002). The results of a cDNA study measure the relative abundance

of the target sequence in the experimental sample to that in the control sample. Since a control

sample is hybridized to each chip, the arrangement of controls deserves special consideration

(Churchill, 2002; Yang and Speed, 2002). For designs such as the comparison of gene expression

pre- and post-treatment across several samples, the choice of control can be straightforward. How-

ever, with other types of experiments, such as the comparison of several experimental samples to

a single control sample, the choice is less clear. More complicated designs, such as the common

reference design and the loop design, frequently appear in cDNA studies. The latter designs are

amenable to analysis with traditional statistical methods such as general linear models (GLMs),

but introduce an added layer of complexity in the analysis.

Another consideration in the design of cDNA experiments is the effect of cohybridizing two

samples to the same array simultaneously. This approach does have advantages, for it removes

extraneous components of between-chip variability (such as differences in chip manufacturing or

handling) when comparing the two samples on the chip (Duggan et al., 1999). However, without

appropriate care, it can also introduce unintended sources of confounding. Systematic differences

between the red and green dyes can occur in the incorporation stage and in the scanning stage

(Dobbin et al., 2003). If not properly addressed, these dye biases can be mistaken for treat-

ment effects. Dye-swap designs, in which the dyes for the experimental and control samples are

swapped for different hybridizations, can be useful in overcoming this bias but at the expense of

additional cost and complexity of analysis.
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1.2.3 Experimental Design of Oligonucleotide Microarray Studies

In contrast to cDNA arrays, only one sample is hybridized to each chip for oligonucleotide arrays.

This can greatly simplify experimental design, making the process very similar to experimental

design for biomedical studies, which has been extensively investigated (Bolstad et al., 2004).

Thus, variations of the GLM are the most frequently used approach (Jafari and Azuaje, 2006).

However, the use of one sample per chip may potentially confound differences in chip manufac-

turing and processing with treatment differences (Gebicke-Haerter, 2005). Replication can help

prevent this bias, as can appropriate use of randomization in the processing phase, although the

latter may not be adequately considered in many microarray experiments. Preprocessing proce-

dures such as normalization are intended to reduce this bias once it occurs, although this only

achieves a partial correction (Bolstad et al., 2004).

1.2.4 Notational Conventions

Notation used in the experimental design of microarray studies varies considerably by author. In

all subsequent sections, probes (or probe pairs) will be designated using the variable P and the

subscript p, probesets with the variable S and subscript s, arrays or chips with the variable M

and subscript m, and experimental conditions or classes with the variable C and subscript c. In

cDNA array models, dye will be designated using the variable D and subscript d and gene, which

roughly corresponds to the probeset variable for oligonucleotide arrays, will be designated with

the variable G and subscript g. For those experiments having both cell lines and treatments, the

former will be denoted with the variable L and subscript `, and the latter with the subscript for

condition. The variable N with the appropriate subscript will be used to denote the number of

elements at that level. For example, Np will denote the number of probes within a probe set,

which may vary from probeset to probeset. Scalar quantities will be denoted with italicized Ro-

man or Greek letters, which may be upper- or lowercase, and the upper- and lowercase variables

are distinct. Vector quantities will be denoted with bold lowercase and matrix quantities with

bold uppercase Roman or Greek letters. This may lead to slight notational differences from the
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original, cited articles, although the meaning will remain the same. Abbreviations for the clas-

sifications of differential gene expression produced by software, such as P for present and A for

absent, are not intended to represent variables and will not be italicized.

1.3 Image Analysis

Following hybridization, both cDNA and oligonucleotide arrays are scanned using a fluorescent

scanner, producing an image of the chip with areas of higher intensity corresponding to areas

of greater target concentration. This image is stored as a graphics file, typically using the tagged

image file format (TIFF) structure. The process of image analysis converts this graphics file into a

series of numerical values, one for each probe, which represents the signal intensity for that probe.

This is a complex process involving three steps: gridding, which assigns coordinates to the pixels

on the chip; segmentation, in which each pixel in the image grid is classified as background or

signal, and intensity extraction or quantification, in which a single overall estimate for the signal

intensity for the probe is computed from the set of pixels representing signal for that probe (Yang

et al., 2001). Image analysis produces a file of signal intensities, whose exact format varies

by platform, which are suitable for expression analyses as detailed in the following sections.

Algorithm development for image analysis is an active area of research; an overview of the topic

for cDNA arrays is given by Jain et al. (2002) and Yang et al. (2001) and for oligonucleotide

arrays by Schadt et al. (2001).

For Affymetrix GeneChips, image analysis produces a CEL file, which contains information

about the experiment and the probe intensities. The first component of the CEL file is a header

section, which details the physical characteristics of the chip and the parameters for the image

analysis. This is followed by an intensity section, which gives the physical x and y coordinates of

the probe on the chip, the number of pixels assigned to the probe, and the mean and standard devi-

ation for the probe based on the pixel intensities. Next is a section giving the coordinates of probes

that are outliers. The final two sections identify masked probes that are removed from analysis by

the user and modified probes with intensities that are assigned by the user; these are listed in the
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final two sections. Using this format, the CEL file provides all of the data necessary for analysis

of individual microarrays. Further details of the CEL file format are available from the Affymetrix

website at http://www.affymetrix.com/Auth/support/developer/fusion/file formats.zip.

1.4 Early Methods for Computing GeneChip Expression

One of the first widely used methods for analysis of GeneChip data was the Affymetrix Microar-

ray Suite version 4.0 (MAS4) algorithm, also called the Empirical Expression algorithm (Affy-

metrix, 2004). As the CEL file format was originally proprietary, MAS4 was the de facto stan-

dard for expression analysis of Affymetrix data in early studies. It also introduced the concepts

of background correction and summarization for GeneChip data, which have been incorporated

in the preprocessing step of later algorithms for Affymetrix expression analysis.

The full details of the MAS4 algorithm have not been published, but a limited description is

provided in the Affymetrix MAS4 User’s Guide and the GeneChip Operating Software (GCOS)

manual (Affymetrix, 2004). For single array analyses (or for each chip in a multi-chip compari-

son), the MAS4 algorithm generates three different metrics comparing the PM and MM intensities

of each probe pair in a probe set. These metrics are then weighted and entered into a decision

matrix to determine the absolute call, which represents the overall status of the probeset on the

chip. The absolute call is simply a classification of present (P), marginally present (M), or absent

(A) for each probeset. In addition, the MAS4 algorithm calculates the AvgDi f f value for each

probeset, which is a relative measure of the level of expression for the probeset. The AvgDi f f for

the sth probeset is defined as

AvgDi f fs =
1

Np

Np∑
p=1

(
PMsp − MMsp

)
(1.1)

where Np is the number of probe pairs in probeset s after trimming values with extremely strong

or extremely weak intensity values. Background correction is performed by subtracting the MM

signal, which is intended to measure nonspecific binding for a probe, from the PM signal to

http://www.affymetrix.com/Auth/support/developer/fusion/file_formats.zip
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obtain an estimate of specific binding. The multiple probe-level values are then summarized into

a single expression index for the probeset using the arithmetic mean.

Comparisons between arrays in the MAS4 algorithm are made by comparing each experimen-

tal array in turn to a user-selected baseline array. The algorithm generates five different metrics

for each comparison. These metrics are then weighted and entered into a decision matrix to de-

termine the difference call, which represents the status of the probeset on the experimental array

relative to the baseline array. The difference call classifies the changes in expression for each

probeset as increased (I), mildly increased (MI), no change (NC), mildly decreased (MD), or de-

creased (D). No original validation studies of the MAS4 algorithm were published, although it

has been used in peer-reviewed publications.

1.5 Current Methods for Computing GeneChip Expression

1.5.1 Introduction

The development of MAS4 represents a significant step forward in the analysis of microarray

data, as it provided a standard index of expression that corresponds to concentration in many

circumstances (Hubbell et al., 2002). However, investigators quickly realized some of the limita-

tions of the MAS4 algorithm. The estimates are sensitive to outliers (Hubbell et al., 2002). Given

the large number of probes on a GeneChip, the presence of outliers is quite likely and can dramat-

ically influence results. The use of the raw MM probe values to estimate nonspecific binding is

also problematic, as the MM value exceeds the PM value for about a third of the probes (Irizarry

et al., 2003). This corresponds to a negative estimate of the target concentration, a physical im-

possibility. Furthermore, the negative estimates preclude the use of many transformations, such

as the logarithmic, that are commonly used in statistics.

With the release of the Affymetrix file formats into the public domain (available at http://

www.affymetrix.com/Auth/support/developer/fusion/file formats.zip), many researchers began to

develop their own analytical algorithms to correct the deficiencies of MAS4. In the following

http://www.affymetrix.com/Auth/support/developer/fusion/file_formats.zip
http://www.affymetrix.com/Auth/support/developer/fusion/file_formats.zip
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Background
Method Correction Normalization Summarization
MAS4 Mismatch None Arithmetic Mean

intensity subtraction

MAS5 Idealized Mismatch Scale Tukey’s Biweight
intensity subtraction

dChip Model-Based Invariant Set Model-Based
Expression Index Expression Index

RMA Model-based Quantile Median Polish
background subtraction

Table 1.1: Overview of Probeset Summary Methods for Affymetrix Data.

sections, the shared features of these algorithms will be presented, followed by specific details of

some of the more commonly used ones. These examples will illustrate the variety of approaches

currently used in microarray data analysis and serve as a reference for methods used in later

comparative studies. An overview of these algorithms is presented in Table 1.1.

1.5.2 Pre-processing

Most algorithms for Affymetrix data that are in current use perform pre-processing of the mi-

croarray data. Pre-processing is intended to correct potential problems when obtaining intensity

values for the probesets on a GeneChip, thus preparing the data from image analysis algorithms

for statistical analysis to detect differential gene expression (Bolstad et al., 2005). Pre-processing

consists of three steps: background correction, normalization, and summarization. Background

correction removes the signal resulting from nonspecific binding of target to probe. Specific bind-

ing occurs due to complementary base-pairing between the two sequences, and the goal of gene

expression studies is to measure specific binding precisely (Wu and Irizarry, 2005). Nonspecific

binding occurs due to other factors, spuriously increasing the detected signal. The MM probe in

a probe pair is intended to measure this nonspecific binding, so that the PM − MM difference

would be specific binding (Wu and Irizarry, 2005). However, the relationship has proven to be

more complex, as the MM probe measures some specific as well as nonspecific binding (Wu
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et al., 2004). Because of this, some investigators have chosen only to use PM probes for esti-

mation of background, while others estimate the background with models utilizing both PM and

MM values (Li and Wong, 2001).

Normalization adjusts the probe intensities to make measurements between different chips

comparable (Bolstad et al., 2003). Variations in the intensity measurements between samples are

expected to occur due to differential gene expression. However, another level of variation occurs

for reasons other than biological differences, which Bolstad et al. call obscuring variation; these

sources of variation can include technical differences in sample preparation, hybridization, and

scanning (Zakharkin et al., 2005). This additional variation leads to differences in the distribution

of the probe intensities among chips, making direct comparisons difficult. Normalization manip-

ulates the probe intensity distributions in an attempt to minimize obscuring variation, so that valid

statistical comparisons of the remaining biological variation can be performed.

Summarization combines the information from the many probes targeting a gene into a single

number representing the expression level for that gene. From a statistical standpoint, this is a data

reduction, which can be useful for reducing the time and complexity of subsequent calculations.

The results of summarization also correspond to the biological question being posed, as expres-

sion differences between genes, rather than expression differences between probes, are usually of

interest.

1.5.3 dChip

One of the first widely-used alternatives to MAS4 was the algorithm used in the dChip software

(Li and Wong, 2001; Li and Hung Wong, 2001). For normalization, dChip uses the invariant

set method, which attempts to base normalization only on those probes that are not differentially

expressed between chips (Li and Hung Wong, 2001). Such probes would be expected to have

similar (but not necessarily identical) intensity-based ranks between two chips, with one chip

identified as the baseline and the other as the chip to be normalized. The procedure to identify

these probes, called the invariant set, is detailed in Algorithm 1.1.
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Algorithm 1.1 Identification of Invariant Set
1: Initialize the invariant set at iteration zero IS (0) to the set of all PM probes for the two chips.
2: For iteration i, calculate the proportional rank difference (PRD), defined as the rank difference

between the two chips divided by the number of probes per chip, for each of the PM probes
in the dataset IS (i).

3: If the PRD for a probe is less than the threshold δ, defined as δ = 0.003 for low intensity
probes and δ < 0.007 for high intensity probes, then retain the probe for the dataset IS (i+1) of
the next iteration. (The different thresholds allow for the sparsity of probes at the upper tail
of the intensity distribution.)

4: Repeat steps 2 and 3 until the invariant set does not change between iterations.
5: Fit a piecewise linear running median line using the invariant set and perform normalization

by projecting the intensities of the chip to be normalized onto the line.

For background correction and summarization, dChip calculates a model-based expression

index (MBEI). This uses a statistical model for the probe intensities that assumes the intensity

is directly proportional to the expression index (or microarray effect) M for array m, but that

the proportionality constant may differ by probe. Furthermore, the increase in PM intensity will

always be greater than the increase in MM intensity. The model is

MMmp = µp + Mmφp + εmp (1.2)

PMmp = µp + Mmφp + MmPp + εmp (1.3)

where µ is the baseline intensity for the pth probe due to nonspecific binding, φ is the propor-

tionality constant for the MM probe due to specific binding, P is the proportionality constant for

the PM probe due to specific binding, and the error term ε ∼ N
(
0, σ2

)
. For identifiability, the

constraint
∑Np

p=1 Pp = Np is also imposed.

In the original model (Li and Wong, 2001), the PM−MM differences are used as the estimate

of the specific binding for the probe

ymp = PMmp − MMmp = MmPp + εmp (1.4)

Estimates of the parameters are found using Equation (1.4). An iterative least squares fitting

is performed for M and for P, with one parameter being fit while holding the other parameter
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constant. The interpretation of the MM signal intensity can be problematic, so Li and Hung Wong

(2001) later constructed a PM-only model

PMmp = µp + MmPp + εmp

This model is fit using iterative least squares, similar to the PM −MM model. Unfortunately, the

use of the dChip algorithm requires a rather large number of arrays to obtain accurate estimates;

Li and Wong recommend 10 or more for most experiments. The software is available at the dChip

website (http://www.dchip.org). The algorithm is also implemented in the fit.li.wong and expresso

functions in the R package affy. However, since the dChip software is not open source, the latter

two functions do not exactly reproduce the results of the former.

1.5.4 MAS5

The MAS5 algorithm was developed by Affymetrix as a successor to MAS4 (Liu et al., 2002;

Hubbell et al., 2002). MAS5 made significant changes to the background correction, normaliza-

tion, and summarization procedures to overcome deficiencies noted in MAS4.

MAS5 makes extensive use of the one-step Tukey’s biweight procedure, which is a robust

measure of central tendency somewhat similar to a weighted mean (Hoaglin et al., 2000). It

is based on a uniform distance measure is calculated for each observation, with standardization

using the median and median absolute deviation (MAD). The biweight value then calculated as a

weighted average of each of the observations. The weight function is chosen to give a weight that

decreases with distance for observations within a certain distance from the median, and a zero

weight for observations outside of this distance from the median. Tukey’s biweight Tbi (·) for the

n observations x1, x2, . . . , xn is formally defined as

Tbi (x1, x2, . . . , xn) =

∑n
i=1 wbi (ui) xi∑n

i=1 wbi (ui)

http://www.dchip.org
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where wbi (·) is the weight function

wbi (xi) =


(
1 − [ui (xi)]2

)2
, |ui (xi)| ≤ 1

0, |ui (xi)| > 1

and u (·) is the uniform distance measure

ui (xi) =
xi −median (x1, . . . , xn)
τ1 ·MAD (x1, . . . , xn) + τ2

Both τ1 and τ2 are user-defined tuning constants specified in the MAS5 software. Tukey’s bi-

weight can be computed by iteratively reweighting the estimates until convergence occurs, but

the one-step estimation used by MAS5 will generally produce acceptable results (Hoaglin et al.,

2000).

For background correction, MAS5 uses a multistep process to ensure that negative intensity

estimates do not occur. Each chip is divided into an Nz × Nz set of rectangular regions, called

zones. The zone background bZ is the average of the lowest 2% of probe intensities for each

zone. The background bg for a probe at position (x, y) on the chip is calculated as a weighted sum

of the zone background values, which smoothes the transition between zones:

bg =
1∑N2

z
i=1 wi (x, y)

N2
z∑

i=1

wi (x, y) bZi (1.5)

where wi (·) is the weight function

wi (x, y) =
1

d2
i (x, y) + τsm

(1.6)

and d (·, ·) is a distance function, the form of which is not specified by Affymetrix. Here the (x, y)

coordinates of a zone are defined to be the center of the zone, and τsm is a user-defined tuning

constant for adjusting the degree of smoothing. The background value for each probe subtracted

from the PM and MM intensities for that probe; any negative values are replaced by a user-defined



www.manaraa.com

19

fraction of the noise for that probe. Next, a probeset-level specific background SB for probeset s

is calculated as

SBs = Tbi

(
log2 PMs1 − log2 MMs1, . . . , log2 PMs,Np − log2 MMs,Np

)
Background correction concludes with the calculation of the idealized mismatch IM. The PM −

IM value is intended to measure specific binding, but unlike the PM − MM value is guaranteed

never to be negative. The formula for the IM value is

IMsp =



MMsp, MMsp < PMsp

PMsp

2SBs
, MMsp ≥ PMsp and SBs > τc

PMsp

2


τc

1 + τc−SBs
τs


, MMsp ≥ PMsp and SBs ≤ τc

where τc and τs are user-defined tuning constants (contrast and scale, respectively) for weighting

the relative importance of probe- and probeset-level information in the calculation. Using this

formula, if the MM value is already lower than the PM value, then MM is a reasonable estimate

of nonspecific binding and is used for the IM value. Otherwise, the IM value is calculated as a

fraction of the PM value. If specific background SB is “large” (as defined using the τc parameter),

then the intensities from the probeset are generally reliable, and the IM value that is constructed is

not specific to the individual probe but does use information restricted to the associated probeset.

If SB is “small”, the intensities from the probeset are less reliable, and the IM value that is

constructed is only weakly related to the probe- and probeset-specific information.

Summarization in MAS5 creates a single expression log value LV for each probeset by taking

the Tukey’s biweight of the log difference between the PM and IM values:

LVs = Tbi

(
log2 (PMs1 − IMs1) , . . . , log2

(
PMs,Np − IMs,Np

))
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Normalization in MAS5 is performed by conducting a scale normalization, which adjusts all

chips to have the same mean intensity. This is done by calculating a scale factor SF to adjust

the 2% trimmed mean to a user-defined target intensity value, then multiplying the unadjusted

expression values by the scale factor to obtain the final expression values EV .

SF =
tg

TrimMean (2LVs , 0.02, 0.98)

EVs = SF · 2LVs

MAS5 is implemented in the GCOS software available from Affymetrix. It is also implemented

in the expresso and mas5 functions in the R package affy, available from the Bioconductor project

(http://www.bioconductor.org). However, the latter two functions do not exactly reproduce the

results of the Affymetrix software, as they were developed prior to the release of the GCOS

software as open source (see http://www.affymetrix.com/support/developer/stat sdk/index.affx).

1.5.5 RMA

The robust multi-chip average, or RMA (Irizarry et al., 2003), is one of the most widely used

expression measures and a standard choice for comparing the performance of new algorithms.

RMA utilizes only the PM value in calculations. For background correction, the observed in-

tensities are modeled as a combination of probe-specific signal sg and nonspecific background

bg:

PMmsp = sgmsp + bgmsp

where sg has an exponential distribution, bg ∼ N
(
0, σ2

)
, and sg and bg are independent of

each other. Background adjustment is accomplished by estimating the probe-specific intensities

E
(
sgmsp|PMmsp

)
, which are the quantities of interest.

http://www.bioconductor.org
http://www.affymetrix.com/support/developer/stat_sdk/index.affx
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For normalization, RMA uses the quantile normalization method (Bolstad et al., 2003). It is

an aggressive form of normalization that forces each chip to have the same distribution of inten-

sities. This is accomplished by transforming all chips to a common distribution, standardizing,

and then back-transforming each chip individually, as shown in Algorithm 1.2. The elements of

Algorithm 1.2 Quantile Normalization
1: Arrange the m microarrays, each with p probesets, into a m × p matrix Y
2: Sort each column of Y individually to give Ysort

3: Compute the row means of Ysort

4: Assign the row mean to each element of the row to give Yad j

5: Rearrange each column of Yad j into the original unsorted order in Y to give Ynorm

Ynorm, denoted by y, represent the quantile-normalized intensities that are used in subsequent com-

putations. Because quantile normalization forces the same distribution across chips, the authors

recommend that normalization only be performed on similar chips.

For computing expression summary values, RMA fits the background-adjusted, quantile-

normalized, and log2-transformed PM intensities y to the additive model

ymsp = µs + Psp + Mms + εmsp

where µ denotes the overall mean for the probeset, P represents the probe affinity effect, and M

represents the array effect, and the error term ε ∼ N
(
0, σ2

)
. The estimate µ̂ + M̂ms is the probeset

expression summary for probeset s on array m. This model is fit using an iterative median polish

procedure, which is a robust method of fitting an additive model that is in some ways analogous

to analysis of variance (ANOVA) (Hoaglin et al., 2000, chapter 6). This procedure iteratively

subtracts the median across each factor (median polish) to obtain successive approximations for

the factor effects, as shown in Algorithm 1.3. Iterations may be carried out until convergence,

which occurs when the residuals after the median polish are zero across all factors, but a small

number of iterations are generally sufficient to give good estimates of the factor effects. The

RMA algorithm is available in the rma and expresso functions in the R package affy, as well as

the stand-alone RMAExpress software (http://rmaexpress.bmbolstad.com/).

http://rmaexpress.bmbolstad.com/
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Algorithm 1.3 Median Polish
1: Initialize the residuals to the intensity data.

ε(0)
msp ← ymsp

2: Initialize the row (probe), column (array), and overall (mean) effects to 0.
µ(0)

s ← 0
P(0)

sp ← 0
M(0)

ms ← 0
3: Row polish by subtracting row (probe) medians

∆P(i)
sp ← median

(
ε(i−1)

1sp , . . . , ε
(i−1)
Nm,sp

)
, p = 1, . . . ,Np

∆µ(i)
Ms ← median

(
M(i−1)

1s , . . . ,M(i−1)
Nm,s

)
ε(i)

msp ← ε(i−1)
msp − ∆P(i)

sp,m = 1, . . . ,Nm; p = 1, . . . ,Np

4: Column polish by subtracting column (array) medians
∆M(i)

ms ← median
(
ε(i)

ms1, . . . , ε
(i)
ms,Np

)
,m = 1, . . . ,Nm

∆µ(i)
sP ← median

(
P(i−1)

s1 + ∆P(i)
s1, . . . , P

(i−1)
s,Np

+ ∆P(i)
s,Np

)
ε(i)

msp ← ε(i)
msp − ∆M(i)

ms, p = 1, . . . ,Np; m = 1, . . . ,Nm

5: Estimate the effects
µ(i)

s ← µ(i−1)
s + ∆µ(i)

sP + ∆µ(i)
Ms

P(i)
sp ← P(i−1)

sp + ∆P(i)
sp − ∆µ(i)

sP, p = 1, . . . ,Np

M(i)
ms ← M(i−1)

ms + ∆µ(i)
Ms − ∆µ(i)

Ms,m = 1, . . . ,Nm

1.6 Hypothesis Testing

Preprocessing of Affymetrix data generates expression summary values that quantify expression

levels of genes on each chip, but expression summary values do not provide information regard-

ing differential expression of genes between conditions. The earliest and simplest approach for

determining differential expression was to examine the fold change, which is the ratio of the

expression summary values for the two conditions of interest. However, investigators quickly

realized that fold change was an inadequate measure, as it does not account for the variability

of expression measurements (Yang et al., 2002). Statistical tests of hypotheses are necessary

to assess the reliability of findings from microarray experiments (Firestein and Pisetsky, 2002).

Many different types of analyses are suitable for microarray data, but variants of the GLM are

among the most widely used, particularly for assessing differential expression (Jafari and Azuaje,

2006). Although it is possible to combine preprocessing with hypothesis testing in the analytical

workflow, the two are usually separate (Tumor Analysis Best Practices Working Group, 2004).



www.manaraa.com

23

The use of GLM methodology brings an extensive literature to bear on microarray data anal-

ysis, including such issues as design of experiments, sample size determination, and testing for

specific types of designs. Certain aspects of statistical hypothesis testing assume particular im-

portance in microarray studies. The first is how to appropriately estimate the variance used for

the hypothesis tests (Cui and Churchill, 2003). One approach is to model the variances as being

completely homogenous, so that a single common variance is used for testing the significance of

all genes. Such an approach offers much greater power than other methods. However, it is gener-

ally not biologically plausible, as the amount of variation between genes is usually considerable

(Wright and Simon, 2003). Furthermore, when using a single global variance, rankings based on

the p-values of the t or F tests under GLM reduce to rankings based on the fold change (Cui and

Churchill, 2003), which has already been noted to be problematic. Another approach is to model

the variances as being completely heterogenous, with a separate variance for each gene. This is

much more reasonable biologically, but suffers from low power to detect significant differences

that typically makes it unsuitable for analyses. Thus, the most common approach is to combine

the two into a “moderated” variance estimate. This allows the variance to differ by gene, but

borrows information across genes to obtain a more reliable variance estimate.

A number of approaches have been proposed for borrowing information across genes. A

Bayesian approach imposes a prior distribution on the variances, with estimates for the variances

being obtained by Bayes or empirical Bayes procedures (Baldi and Long, 2001; Lonnstedt and

Speed, 2002; Kendziorski et al., 2003; Newton et al., 2001; Efron et al., 2001; Smyth, 2004).

This is implemented in the limma package available from Bioconductor (Smyth, 2005). Fre-

quentist methods for moderating the variance have also been developed. The t-test in the Signifi-

cance Analysis of Microarrays (SAM) software (http://www-stat.stanford.edu/∼tibs/SAM/) adds a

small bias constant to the gene-specifc variances to attenuate the effect of small variances (Tusher

et al., 2001). Although this does moderate the variances, it fails to utilize information across

genes. Other researchers suggest that the gene-specific variances be considered as a sample from

a common distribution, which shares similarities to the Bayesian approach but leads to different

estimators (Wright and Simon, 2003). Finally, Cui et al. (2005) describe a shrinkage estimator

http://www-stat.stanford.edu/~tibs/SAM/
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Decision
Accept Reject Total

True n1 n2 HT

H0 False n3 n4 HF

Total A R N

Table 1.2: Outcomes from N Simultaneous Hypothesis Tests, where n1 + n4 is the total number
of correct decisions, n2 is the number of type I errors, and n3 is the number of type II errors.

for the gene-specific variances based on the James-Stein estimator.

A second aspect of particular importance in microarray studies is how to adjust for multiple

hypothesis testing. Microarray experiments measure the expression of thousands of genes at once,

yet the number of arrays hybridized is typically small. This is the inverse of the usual statistical

analysis, where only a small number of hypotheses are examined, and numerous replications are

used to achieve accuracy. Thus, traditional methods of adjusting for multiple testing may not be

suitable for microarray data. Assuming that N simultaneous hypothesis tests are being conducted

with an desired overall type I error rate of α, the outcomes may be conceptualized as shown in

Table 1.2. Traditionally, adjustment for multiple hypothesis testing has been accomplished by

controlling the family-wise error rate (FWER; Dudoit et al., 2002). This rate is computed as

FWER = Pr (n2 ≥ 1) (1.7)

Thus, the family-wise error rate (FWER) is the probability of one or more type I errors (or false

positives) among all genes declared differentially expressed. The FWER is controlled by con-

ducting the N individual tests at lower significance level so that the overall level remains at α.

The prototypical example is the Bonferroni procedure, which adjusts the level of the individual

tests to be α/N. Less conservative methods of adjusting the FWER have also been developed.

Benjamini and Hochberg (1995) proposed an alternative to the FWER, which they call the

false discovery rate (FDR). The false discovery rate (FDR) represents the expected proportion of

false positives among all of the rejected null hypotheses (false discoveries) times the probability
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of at least one rejected null hypothesis. This is computed as

FDR = E

(n2

R
| R > 0

)
× Pr (R > 0) (1.8)

The FDR is generally a more meaningful method of controlling error rates for microarray studies,

which are exploratory in nature and so a small number of false positives is acceptable. It also has

the practical interpretation that 100α percent of the genes declared differentially expressed would

be false positives. The FDR controlling procedure may be expressed algorithmically as follows:

Let N be the number of null hypotheses, with HT of these being true and HF of these being false.

Let H1,H2, . . . ,HN represent the null hypotheses corresponding to the vector of test statistics

T1,T2, . . . ,TN . Denote the associated p-values as p1, p2, . . . , pN so that pi = 1 − FHi (Ti) for the

cumulative distribution function (CDF) F (·) under the null hypothesis Hi. Let p(1), p(2), . . . , p(N)

be the ordered p-values, and let H(i) be the hypothesis corresponding to p(i). Define

j = max
{
i : p(i) ≤

i
N

q
}

(1.9)

Then, for independent test statistics and for any configuration of false null hypotheses, rejecting

all H(i), i = 1, 2, . . . , j, controls the FDR at level q.

The above procedure (hereafter called the Benjamini-Hochberg procedure) assumes that the N

null hypotheses are independent, which would seem to be an untenable assumption for microarray

studies (Dudoit et al., 2002). However, the proof of the associated theorem does not require

independence, and it is possible that this assumption may be relaxed. Benjamini and Yekutieli

(2001) showed that the above result for the Benjamini-Hochberg procedure holds under more

general conditions for multivariate normal test statistics. Reiner et al. (2003) note that these

results for FDR control with one-sided tests apply to microarray experiments; assuming that

up- and down-regulation are equally likely to occur, these results extend to two-sided tests as

well (Yekutieli, 2002). Benjamini and Yekutieli (2001) further generalize the FDR controlling

procedure to allow for arbitrary dependency structures, but this result comes with a considerable
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loss of power compared to the Benjamini-Hochberg procedure and is not necessary for most

studies (Reiner et al., 2003).

1.7 Mixed Effects Models for Microarrays

1.7.1 Introduction

Kerr, Martin, and Churchill (2000) were the first to propose the use of ANOVA models to adjust

for the multiple sources of variation in microarray data. Their original formulation, which is for

cDNA microarrays rather than Affymetrix GeneChips, models the log-transformed intensity y of

the mth microarray, dth dye, cth condition (labeled as variety in the original paper), and gth gene as

ycmdg = µ + Mm + Dd + Cc + Gg + (MG)mg + (CG)cg + εcmdg (1.10)

where µ is the overall mean, M is the array effect, D is the dye effect, C is the effect of condition, G

is the gene effect, (MG) is the array by gene interaction, (CG) is the condition by gene interaction.

In the vector and matrix formulations of the model described in subsequent sections, these effects

would be incorporated into the design vector (or matrix), denoted x (or X), and the vector (or

matrix) of coefficients, denoted β. The error terms ε are assumed to be iid N
(
0, σ2

)
. For this

model, the effects of interest are the condition by gene interactions (CG). A nonzero value of

this term would be interpreted as differences in intensity across conditions for gene g, indicating

differential expression. Although replicates were not explicitly incorporated into the description

by Kerr and colleagues, the flexibility of the ANOVA model allows such information to be added

easily.

Wolfinger et al. (2001) extended this model for cDNA arrays to include random effects. They

divide the analysis into two interconnected ANOVA models. The first is a “normalization” model

corresponds to the normalization step in expression summary measures, correcting for systematic

differences among arrays to allow valid comparisons. For this model, the log-transformed inten-

sity y of the cth condition (labeled as treatment in the original paper), mth microarray, and gth gene
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may be written as

ycmg = µ + Cc + Mm + (CM)cm + εcmg (1.11)

where µ is the overall mean, C is the condition effect, M is the array effect, (CM) is the array by

condition interaction, and ε represents random error. The effects M, (CM), and ε are assumed

to be normally distributed random variables with mean 0 and variances of σ2
M, σ2

CM, and σ2
ε

respectively. These random variables are also assumed to be independent of each other. Wolfinger

et al. did not include dye effects in Equation (1.11) as dye effects were confounded with treatment

effects in their experiment. However, dye effects may be added to the normalization model when

permitted by the experimental design. The residuals ε̂ from Equation (1.11) contain the remaining

variation after adjusting for treatment and array effects. These residuals are used as the dependent

variables in the second “gene” model, which is given by

ε̂cmg = Gg + (CG)cg + (MG)mg + ψcmg (1.12)

where G is the gene effect, (CG) is the gene by condition interaction, (MG) is the gene by array

interaction, and ψ is random error. The effects (MG) and ψ are assumed to be normally distributed

random variables with mean 0 and variances σ2
MGg

and σ2
ψg

respectively. Again, the random vari-

ables are assumed to be independent of each other. The availability of replicate arrays is explicitly

assumed as significance levels are determined using estimates of within-gene variability. While

the model in Equation (1.10) treats arrays as a fixed effect, Equations (1.11) and (1.12) model

arrays as a random sample from a population of arrays. Similar to Equation (1.10), the effects of

interest are the gene by treatment interactions.

The ANOVA models described above fit a single model to all genes on the array. Ayroles and

Gibson (2006) note that, with larger data sets, the error variance may be estimated within genes.

They propose a gene-specific ANOVA in which a linear model is fit separately for each gene. The

relative fluorescence intensities y for the mth microarray, dth dye, and cth condition (or treatment
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in the original paper) would be

ycmd = µ + Mm + Dd + (MD)md + Cc + εcmd (1.13)

where µ is the overall mean, M is the array effect, D is the dye effect, (MD) is the array by dye

interaction, C is the condition effect, and ε represents random error. The error term ε is assumed

to be normally distributed with mean 0 and variance σ2, and may be different for each gene.

The gene-specific ANOVA model more accurately captures gene-to-gene variation present on an

array, which is a definite advantage for statistical analysis when there are sufficient replicates for

such an approach.

Chu et al. (2002) modified the mixed effects model proposed by Wolfinger et al. for the analy-

sis of Affymetrix GeneChip data. In this formulation, the dependent variable is a suitable measure

of gene expression for the Affymetrix platform. Chu et al. recommend the log2-transformed PM

intensities, but the log2 (PM − MM) values may also be used after appropriate adjustment for

negative values. They further recommend that the dependent variable be centered to have mean 0

to adjust for gross array-level effects. The transformed and centered intensities yp for the `th cell

line, cth condition (or treatment in the original paper), pth probe, and mth array are modeled as

y`cmp = L` + Cc + (LC)`c + Pp + (LP)`p + (CP)cp + Mm(`c) + ε`cmp (1.14)

where L is the cell line effect, C is the condition (treatment in the original paper) effect, (LC)

is the cell line by condition interaction, P is the probe effect, (LP) is the cell line by probe

interaction, (CP) is the condition by probe interaction, M is the array effect nested within cell line

and condition, and ε represents random error. The effect M is assumed to be iid N
(
0, σ2

M

)
. The

error ε is assumed to be iid N
(
0, σ2

)
and independent of M. The effects of interest for determining

differential expression across treatments would be the condition by probe interaction term PC.
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1.7.2 Advantages of the Mixed Effects Model

Mixed effects models introduce added complexity to the analysis of microarray data, but also

carry several potential advantages. One advantage is the greater generalizability of results (Brown

and Prescott, 2006, p. 23). The fixed effects model formulates variables such as array as a separate

factor. This assumes that the factors in the experiment represent all possible factors, and that

additional replications of the experiment would not lead to different factors. Such an assumption

would be reasonable for variables such as treatment group. However, for variable such as array,

the assumption may not hold; replications of the experiment would utilize different arrays, which

may not have the same characteristics as the previously used arrays. In contrast, the mixed effects

model formulates variables such as array as a random sample from a larger population, with

inferences applied to the population rather than the sample. Thus, if the variables follow the

postulated distribution, the mixed effects model makes the inferences generalizable to a much

larger group. The mixed model approach may incur some cost compared to the fixed effects

model in that some effects that are significant in the latter may not be in the former, but the

improved generalizability usually justifies this cost (Brown and Prescott, 2006, p. 18).

Another advantage of the mixed effects model is the reduction in the number of parameters,

which improves the estimation and testing process. In the fixed effects model, specification of

a variable such as array as a separate factor requires one parameter for each distinct level of the

variable. In contrast, the same variable can be specified with two parameters – the mean and

variance – in the mixed effects model if a normal distribution is postulated. This reduction in the

number of parameters results in increased degrees of freedom for hypothesis testing, leading to

more accurate estimates of effects (Brown and Prescott, 2006, chap. 2).

These two advantages are not specific to microarray data, but apply to mixed models in gen-

eral. Wolfinger et al. (2001) proposed additional advantages of mixed effects models for microar-

rays. These include the extreme flexibility in experimental design and modeling; the accommo-

dation of missing data for intensity measurements; the accommodation of arbitrary methods of

background correction; and the applicability to both cDNA and oligonucleotide chips, as well as



www.manaraa.com

30

other types of data.

Chu et al. (2004) illustrated the advantages of mixed effects models by comparing the mixed

model of Chu et al. (2002) in Equation (1.14) with the fixed effects model of Li and Wong (2001)

given in Equations (1.2) and (1.3). Analyses were conducted using the ionizing radiation data

from Tusher et al. (2001) as well as simulated data. For the former, both models fit the data well,

with R2 > 0.96. However, for approximately 1% of the genes, the R2 value for the mixed model

was much better than that of the fixed effects model, which Chu et al. attributed to incorporation

of a treatment by probe interaction effect and better handling of outliers in their model. The use

of the mixed model also resulted in the gain of 18 degrees of freedom in testing the significance

of parameters. The simulation studies suggested that the mixed effects model was associated with

slightly less liberal confidence intervals and slightly better R2 values than the fixed effects model,

although both fit the data well with R2 > 0.92.

1.7.3 Implementation

The mixed effects model represents a general statistical analysis technique. Although several

researchers have advocated a mixed model approach to microarray data, there is currently no

specific microarray analysis software dedicated to mixed effects modeling. Previous studies have

used PROC MIXED in the SAS statistical system (SAS Institute, Cary, NC) for data analysis

with good results. Within the R programming environment, the limma package (http://www.

bioconductor.org) provides a variety of functions for studying microarrays with linear models,

though it is primarily intended for fixed effects models and only allows one random effect at

present. The R package nlme (http://cran.r-project.org) has a number of functions for both linear

and nonlinear mixed effects models, although it has not been applied to microarray data. Facilities

for mixed effects model analysis are also available in a number of other statistical packages,

though their use with microarray experiments has not been specifically described.

http://www.bioconductor.org
http://www.bioconductor.org
http://cran.r-project.org
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1.8 Review of Probe-Level Analysis

Despite some variations in how analyses are conducted, all of the above methods operate at the

probeset level. Prior to analysis, the probe intensities are summarized into a single measure of

expression for each probeset, using one of the various expression summary algorithms. This

is followed by statistical tests to determine which genes are differentially expressed between

conditions. The summarization step accomplishes data reduction, a common goal in statistics.

However, the efficiency of the summarization statistic is also of interest; efficiency is a measure

of the variance of the statistic relative to another statistic or to the theoretical minimum variance

predicted by the Cramér-Rao inequality. Lemon et al. (2003) provide some initial data regarding

this issue. Using the Affymetrix U95 spike-in dataset, they compared the coefficient of variation

calculated with probe-level data to the coefficient of variation calculated with the MAS5 and

dChip expression summaries. Both of the probeset-level measures failed to reach the optimal

efficiency predicted by sampling theory, indicating that the summary measures do not capture all

of the information contained in the individual probes. Summarization methods are improving, and

much of current research efforts center on developing more effective probeset summary measures.

An alternative approach would be probe-level analysis.

For probe-level analysis, statistical testing is performed using probe-level data directly, rather

than summary values. Such an approach has some potential advantages. First, by avoiding the

use of expression summary measures, there is no loss of information from the summarization

step (Lemon et al., 2003). Second, probe-level models include the variation of probes within

a probeset, which often exceeds the variation of probes across chips (Yang et al., 2003). High

variability between the probes within a probeset would generally lead to problems in summarizing

the probe intensities with a single probeset expression value. Finally, the use of probe level data

increases the information in the experiment by an order of magnitude (Barrera et al., 2004), which

may allow for more accurate tests of differential gene expression.

Although probe level analysis represents a viable alternative for microarray data analysis,

there have also been potential disadvantages that have encouraged a focus on expression summary
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measures. First were computational considerations. The early microarray datasets often required

reduction to be processed by then-current computer hardware in a timely manner. However, the

growth in computational power in the intervening years means that statistical analysis of probe-

level data has become more feasible. A second reason would be the sizable amount of experience

with expression summary algorithms. These algorithms have been improving over time, and it

is possible that future versions will have greater efficiency and achieve adequate reduction of

probe-level data with minimal loss of information. However, this remains largely theoretical, as

the efficiency bounds for expression summary values has not been established.

1.8.1 Logit-t

There have been attempts to develop algorithms for probe level analysis, though none are com-

monly used like the expression summary methods. One of the earliest is the PM-only model

Logit-t (Lemon et al., 2003). An underlying assumption for the model is that the binding of

targets to microarray probes has similar dynamics to the binding of oligonucleotides in solution,

which is a first-order kinetic reaction at equilibrium. (Lemon et al. (2003) provide empirical

evidence that such an assumption is correct.) The hybridization reaction can be depicted as

probe + target� hybrid

so that the forward rate reaction Rate f and reverse rate reaction Rater are

Rate f = k f
[
probe

] [
target

]

Rater = kr
[
hybrid

]
where k f and kr are the respective rate constants and [·] denotes the concentration of a reactant.

The Logit-t model assumes that the the signal intensities are proportional to the concentration of
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the reactant, and so treats intensities and concentrations interchangeably. The kinetic equation for

the rate of formation of the hybridization complex over time is considered the same as the change

in signal intensity over time, dy/dt, yielding the equation

dy
dt

= k f
[
probe

] [
target

]
− kr

[
hybrid

]
(1.15)

At equilibrium, dy/dt = 0 and Equation (1.15) becomes

k f

kr

[
probe

]
=

y[
target

] =
y

to − y
=

y
to

1 −
y
to

(1.16)

where to is the total amount of probe available for binding. After removing the additive back-

ground signal bg, Equation (1.16) becomes

k f

kr

[
probe

]
=

y − bg
to − bg

1 −
y − bg
to − bg

(1.17)

Log-transformation of the last part of Equation (1.17) yields the equation

logit (y) = log
(
y − bg
to − y

)
(1.18)

Log-transformation of the first part of Equation (1.15) gives a second equation for logit (y) in

terms of the amount of target RNA,
[
target

]
, from which Lemon et al. constructed a second in-

dex called Logit Exp. However, this index did not offer better performance than other methods,

and only the Logit-t was developed further. For the Logit-t model, the maximal signal intensity

for the array is substituted for to and the background signal for the array is substituted for bg.

Both maximal and background signal intensities are assumed to be constant for an array and are

estimated by adding or subtracting 0.1% of the intensity range to the maximum and minimum

probe intensities, respectively. The authors note that, after using the transformation in Equa-
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tion (1.18), the probe intensities empirically follow an normal distribution. Thus, the standard

Z-transformation is applied to map the logit-transformed values to a N (0, 1) distribution. The

Student’s t-test statistic is then computed for each probe across the arrays in each condition. The

Logit-t for each probeset is defined as the median of the t-test statistics of all probes within the

probeset. The suggested cutoff for determining differential expression with Logit-t is the t-test

value corresponding to p < 0.01 with the degrees of freedom equal to the total number of arrays

minus 2.

The original validation studies compared Logit-t to MAS5, dChip, and RMA using the Affy-

metrix U95 and GeneLogic U95 spike-in datasets. As each dataset contains multiple groups of

chips hybridized at differing concentrations, analyses used all pairwise comparisons between con-

centration levels of a dataset. For each pair, the Logit-t statistic for each probeset was computed

across all chips within a concentration level, and probesets were declared differentially expressed

using the cutoff level of p < 0.01. For the other three methods, expression summary values were

computed using the respective software packages. For each pair, the Student’s t-test for each

probeset was computed using all chips within a concentration level. A cutoff of p < 0.01 was

considered significant for declaring a probeset to be differentially expressed. The results of all

methods were then compared to the list of spike-in probesets to determine accuracy. With the

Affymetrix dataset, the sensitivity of the four methods ranged from 75% to 87%; for the GeneL-

ogic dataset the sensitivity was lower, ranging from 11% to 67%. The specificity of all methods

was 99% to 100% across all analyses. However, the positive predictive value (PPV) for the Logit-

t was consistently greater than the other methods, with rates of 22% to 76% for the former but

only 2% to 10% for the latter. The receiver operating characteristic (ROC) curves showed similar

results, with Logit-t having the highest area under the curve (AUC), followed by RMA, dChip,

and MAS5. Based on these results, Lemon et al. concluded that probe-level analysis with the

Logit-t algorithm had significant advantages over other methods by reducing the number of false

positives with little increase in the number of false negatives. A software implementation of the

algorithm in C was made available by the authors, and the Logit-t algorithm has been used in

several peer-reviewed publications (David et al., 2006; Hueber et al., 2007; Nielsen et al., 2006;
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Balasubramanian et al., 2006; Brodersen et al., 2006; Mogensen et al., 2006; Schwab et al., 2006;

Leibfried et al., 2005; Wigge et al., 2005; Andreasson et al., 2005; Schwab et al., 2005; Master

et al., 2005).

1.8.2 Multi-mgMOS

Liu et al. (2005) develop a much different formulation with their multichip modified gamma

model of oligonucleotide signal (mmgMOS) model. This model utilizes information from both

the PM and MM intensities and is built on the assumption that both follow a gamma distribution.

Specifically, the distribution of the PM and MM intensities for probeset s, probe pair p, and array

m are given by

PMmsp ∼ Gamma
(
bgms + sgms, scsp

)
(1.19)

MMmsp ∼ Gamma
(
bgms + φsgms, scsp

)
(1.20)

The choice of the gamma distribution is made on empirical, not theoretical, grounds. The gamma

distribution is capable of modeling a variety of empirical distributions, including highly skewed

ones such as that typically seen for probe intensities. In Equations (1.19) and (1.20), the constant

φ represents the amount of specific binding present in the MM probes, which proportional to

the specific binding of the PM probes. The shape parameter has two components: a nonspecific

hybridization signal bg and a specific hybridization signal sg, both of which are specific to a

probeset on a particular chip. The scale parameter sc is a hyperparameter that also follows a

gamma distribution

scsp ∼ Gamma (shs, chs) (1.21)

where sh and ch are probeset-specific parameters that are shared across chips. The quantity of

interest is the corrected intensities ymsp = PMmsp − MMmsp. From the properties of the gamma
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distribution,

ymsp ∼ Gamma
(
sgms, scsp

)
The parameters in Equations (1.19) – (1.21) are estimated using an iterative maximum likelihood

procedure. First, while φ is held fixed, bg, sg, sh, and ch are fitted. Next, with these four variables

held fixed, φ is fitted. This process is repeated until convergence. The CDF of the specific signal

is then

p
(
ymsp|sgms, shs, chs

)
=

∫
p
(
ymsp|sgms, scsp

)
p
(
scsp|shs, chs

)
dscsp

=
Γ (shs + sgms) chshs

s ysgms−1
msp

Γ (sgms) Γ (shs)
(
chs + ymsp

)shs+sgms

and the expected value and variance of the logarithm of the specific signal are

log
(
ymsp

)
= log (chs) + Ψ (sgms) − Ψ (shs) (1.22)

var
(
log

(
ymsp

))
= Ψ′ (sgms) + Ψ′ (shs) (1.23)

where Ψ (·) is the digamma function and Ψ′ (·) is the first derivative of the digamma function.

Equations (1.22) and (1.23) are then used to calculate percentiles and credibility intervals for

ymsp, which determine whether probeset s is declared differentially expressed. The mmgMOS

algorithm is available in the puma package from Bioconductor. The algorithm has been used in

peer-reviewed studies, though mostly by the original authors (Liu et al., 2007; Purutcuoglu and

Wit, 2007; Rattray et al., 2006; Liu et al., 2006; Sanguinetti et al., 2006).

1.8.3 Probe-level ANOVA

Barrera et al. (2004) provide an approach to probe-level modeling based on ANOVA. By includ-

ing both probe and treatment effects, this model accounts for the variation among probes when
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testing for the significance of treatments. The ANOVA model used is

ycmp = µ + Pp + Cc + CPcp + εm(cp)

where y is the logarithm of the probe intensity, µ is the overall mean, P is the effect of the pth

probe, C is the effect of the cth condition (treatment in the original paper), (CP) is the probe-

condition interaction, and ε is the error term. Testing is performed using an F-test comparing

between-treatment variation to within-treatment variation with the appropriate degrees of free-

dom. Barrera et al. also provide a nonparametric approach using the Mack-Skillings test (Mack

and Skillings, 1980). This is a generalization of the Friedman test (Friedman, 1937) to include

replicate data and is a distribution-free analogue of the two-way ANOVA. In this particular ap-

plication, the Mack-Skillings test compares the squared deviation of the sum of the ranks for

probes within a probeset to the expected sum under the null hypothesis of no differential expres-

sion. Similar to the Wilcoxon test, cutoff values for the Mack-Skillings test can be computed

numerically for small sample sizes, and a χ2 approximation can be used for larger samples.

Validation studies were carried out using the Affymetrix U95 Latin Square spike-in dataset

and the FBSS dataset of Lemon et al. (2002). The latter dataset consists of 18 Affymetrix

HuGeneFL chips in 3 conditions (serum starved, serum stimulated, and a 1:1 mixture of starved/s-

timulated) containing 6 replicates each. Comparisons were made using one-way tests (the para-

metric t-test and the nonparametric Wilcoxon test), Logit-t, and probe-level ANOVA. For the

one-way tests, arrays were preprocessed using the PM-only model in dChip for background cor-

rection, normalization, and summarization. For the one-way tests and the probe-level ANOVA,

p-values were adjusted for multiple testing by controlling the FDR, using the step-up procedure

of Benjamini and Hochberg (1995) and a resampling-based procedure similar to the one in the

SAM software (Tusher et al., 2001). Comparisons of the serum-starved and the serum-stimulated

chips from the FBSS dataset showed that probe-level ANOVA labeled the largest number of

genes as differentially expressed. Comparisons of chips within conditions showed that no method

declared genes differentially expressed, so the increased number of positive results with probe-
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level ANOVA did not appear to come from increased false positives. Pairwise tests using the

Affymetrix U95 spike-in dataset showed that probe-level ANOVA was capable of detecting true

differential expression with a much lower fold-change than the one-way methods. Finally, Bar-

rera et al. examined the tradeoff between sensitivity and specificity using ROC curves for each

method on the Affymetrix data with a constant two-fold change. Probe-level ANOVA had the

largest AUC, with sensitivity of 91% and specificity of 99.84%. This was followed closely by

the Mack-Skillings test, while the one-way methods performed at near chance levels. Probe-level

ANOVA also had the highest AUC as a function of sample size. Based on these results, the authors

concluded that probe-level ANOVA offered similar performance to Logit-t, and both probe-level

methods offered significant advantages over probeset-level methods. The probe-level ANOVA

algorithm has been used in peer-reviewed studies (Lemieux, 2006), and a MATLAB version of

the algorithm available from the authors (http://carrier.gnf.org/publications/ProbeStatistics).

1.9 Summary of Current Research

In a relatively short time frame, microarrays have advanced from a novel, unproven methodology

to a commonly used technology in the analysis of differential gene expression. Parallel develop-

ments in analytical methodology have resulted in significant improvements in expression analysis

algorithms. However, much of this work for Affymetrix GeneChips has focused on probeset-level

expression summaries. Although such an approach has proven useful, more recent research shows

that analysis of Affymetrix data at the probe level is feasible and may offer significant gains in

accuracy. Furthermore, most analytical methods have utilized fixed-effects models in hypothe-

sis testing of differential gene expression. The use of mixed effects models for Affymetrix data

appears promising but has not been extensively investigated.

The central hypothesis of this proposal is that analysis of Affymetrix GeneChips using probe-

level methodology will result in significant improvements in the detection of differential gene

expression compared to probeset-level methods. The next two sections describe two algorithms,

the S-Score and the Random Variance Model, which will be extended for probe-level testing of

http://carrier.gnf.org/publications/ProbeStatistics
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multiple chips. The S-Score algorithm is a validated probe-level model for analyzing pairs of

arrays, which will require extension of the model to multiple chips. The Random Variance Model

is a probeset-level algorithm that borrows information across genes by modeling a distribution

for the gene-specific variances; it will require extension to a probe-level model. Subsequent

sections will provide the theoretical derivations underlying these extensions and details of the

software implementation, followed by the results of comparisons of these probe-level methods to

probeset-level methods using standardized datasets. Finally, these implications of these results

for analysis of differential gene expression will be discussed, and directions for future research

will be presented.
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The S-Score Algorithm

2.1 Development

The S-Score algorithm represents one of the earliest probe-level analysis methods (Zhang et al.,

2002). It is based on a novel error model for the expression of probe pair signals, in which the

error for the detected signal is assumed to be proportional to the signal intensity for highly ex-

pressed genes, but approaches a background level (rather than 0) for poorly expressed genes. It

has similarities to the error model of Hughes et al. (2000) for cDNA microarrays, which incor-

porates both an additive and multiplicative component. In their model, the error associated with

channels 1 and 2 of gene g (called a spot in the original paper) is given by

εg =

√
bv2

1g + bv2
2g + γ2

(
y2

1g + y2
2g

)
(2.1)

where y is the measured signal intensity, bv is the uncertainty (variance) due to background sub-

traction, and γ is a fractional multiplicative error due to technical variation. The significance

statistic Z for gene g on the array is then given by

Zg =
y1g − y2g√

bv2
1g + bv2

2g + γ2
(
y2

1g + y2
2g

) .
Hughes et al. reported that empirically Z was found to approximately follow a normal distribu-

tion, and bv and γ were chosen so that Z had unit variance. Also, based on empirical evidence,

40
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they reported that bv tended to vary among arrays and derived this quantity from the background

fluctuation level for each array; while γ tended to be fairly constant among arrays and was de-

termined from control experiments where nominally the same sample was hybridized in both

channels. The probability of the statistic X being as or more extreme than the one observed can

then be calculated as

p-value = 2
(
1 −Φ

(∣∣∣Zg

∣∣∣))
where Φ (·) is the standard normal CDF.

This cDNA model was used by Zhang et al. to develop a similar probe-level model for oligo-

nucleotide arrays. This model compares two conditions of one microarray each, so that Nc = 2

and Na = 1. For their model, the error estimate for the pth probe pair of probeset s for two

GeneChips 1 and 2 is given by

εsp =

√
γ2

(
y2

1sp + y2
2sp

)
+ bv2

1 + bv2
2 (2.2)

where bv1 and bv2 are the background noise estimates associated with GeneChips 1 and 2, re-

spectively; y1sp and y2sp are the PM1sp − MM1sp and PM2sp − MM2sp probe pair differences for

GeneChips 1 and 2; and γ is a predefined value assumed to be constant for all GeneChips which

represents the proportionality of error attributed to highly expressed genes. Therefore, γ may be

thought of as the additional proportion of error attributed to y1sp and y2sp, which results in a larger

quantity for highly abundant genes when y1sp and y2sp are much greater than bv1 and bv2.
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The values of bv1, bv2, and γ are given by

bv1 = SDT1

= 4 × RawQ1

= 4 ×
1

BG1

BG1∑
i=1

stdevi√
pixeli

 × SF1

bv2 = SDT2

= 4 × RawQ2

= 4 ×
1

BG2

BG2∑
i=1

stdevi√
pixeli

 × SF2

γ = 0.1 (2.3)

where SDT1 and SDT2 are the Statistical (or Standard) Difference Threshold (SDT) values of

GeneChip 1 and 2, respectively. RawQ is an estimate of the background noise, where BG is the

number of probes used in the background estimate; stdevi and pixeli are the standard deviation

and number of pixels for the ith probe among probes used in the background estimate; and the

Scale Factor (SF) is used to scale each of the intensities on the chip to a specified target back-

ground value (Affymetrix, 2002b). The values of RawQ and SF are available from the Affymetrix

GeneChip Operating Software. The value of γ was chosen as indicated in Equation (2.3) so that

the scale of the S-Scores does not depend on the expression levels of a gene. This is consistent

with the work of Hughes et al. for cDNA arrays.

These probe pair level error estimates are then used in the calculation of a new statistic mea-

suring relative change in gene expression, which Zhang et al. called the significance score or

S-Score for brevity. A relative change in probe pair intensities is calculated that converts the

probe pair signal differences into multiple measurements with equalized errors. These relative

changes are then summed to form the S-Score, which is a single measure of the significance of
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change for the gene in question. For probe set s, the S-Score is calculated as

S s =

Np∑
i=1

y2sp − y1sp

αεsp
√

Np
(2.4)

where y1sp, y2sp, and εsp are as in Equation (2.2); Np is the number of probe pairs within the

sth probe set; and α is a normalization factor that corrects for the effect of correlation among

probe pair signals. The value of α was chosen for an individual chip so that the variance of S-

Score values on an array is 1 when outliers are excluded. For non-differentially expressed genes,

Zhang et al. state that the S-Score follows a standard normal distribution, though their derivation

is empiric rather than theoretical. P-values are readily calculated using the S-Score values, which

aid in determining the significant differences in gene expression. The S-Score method eliminates

the need for estimation of probe set expression summaries, simplifying the analytical process. S-

Scores, by virtue of their direct comparison of individual probe-pair data, provide comparison of

the expression change between two chips. This allows at least inferential statistics on experiments

with limited numbers of microarrays.

The εsp in Equation (2.2) does not represent a rigorous statistical error estimate, but an intu-

itive proxy for this quantity. The variance of y2sp−y1sp, the difference in signal intensities between

GeneChips 1 and 2, would be

var
(
y1sp − y2sp

)
= var

(
y1sp

)
+ var

(
y2sp

)
+ bv2

1 + bv2
2

assuming that GeneChips 1 and 2 are independent, and that the standard deviation of the back-

ground for GeneChips 1 and 2 is bv1 and bv2 respectively. Unfortunately, the variance of y1sp

and y2sp cannot be directly estimated as there is only one observation for the probe on each chip.

Equation (2.2) utilizes

y2
1sp =

((
PM1sp − MM1sp

)
− 0

)2

1
(2.5)



www.manaraa.com

44

as a proxy variance estimate for y1sp (and similarly for y2sp), weighted by the factor γ. This proxy

is not ideal as it would represent a biased estimate of the variance.

2.2 Implementation

The S-Score algorithm was originally coded in C++ with a compiled executable available from

the authors (Kennedy et al., 2006b). The algorithm was later ported to Borland Delphi, a variant

of the Pascal language (Kerns et al., 2003). A stand-alone GUI version for the Microsoft Windows

operating system is available from http://www.brainchip.vcu.edu. This software directly reads the

*.CEL files for the set of experiments and produces a tab-delimited file containing the S-Score

values for each probeset, which may be read and further analyzed using standard statistical or

spreadsheet programs.

More recently, Kennedy et al. (2006b) have implemented the S-Score algorithm in R, an

open source programming environment (R Development Core Team, 2007). Integration with R

allows the user to customize the analysis in ways that were not previously available, such as the

use of preprocessing and visualization functions. Being open source, this implementation may

be further modified to meet specific needs of individual users. The sscore package available

through the Bioconductor (Gentleman et al., 2004) project. The package has two main functions,

SScore and SScoreBatch, which calculate the S-Score statistics. The former performs a two-chip

comparison, while the latter performs multiple pairwise comparison of chips.

2.3 Performance Assessment

Zhang et al. (2002) conducted initial studies assessing the performance of the S-Score at the

time of its development. In their first study, the S-Score was used to analyze expression profiles

between different brain regions (prefrontal cortex versus ventral tegmentum) and similar brain re-

gions (ventral tegmentum versus ventral tegmentum) across experimental animals. In the former,

significant differences would be expected, reflecting the varying genetic expression in dissimilar

http://www.brainchip.vcu.edu
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brain regions; and these differences in expression would be consistent across subjects. In the

latter, any differences would be expected to represent random variation or experimental error, so

these differences would be small and not consistent across subjects. This was indeed the case,

with a correlation coefficient between S-Scores of R = 0.75 in the former case but only R = 0.17

in the latter case. Thus, S-Score values were clearly reproducible when comparing two distinc-

tive brain regions, prefrontal cortex and ventral tegmentum, that would be expected to show gene

expression differences.

In their second study, comparisons were also made between the S-Score and the Affymetrix

MAS4 software (Affymetrix, 1999). Comparisons were between dissimilar brain regions, pre-

frontal cortex versus ventral tegmentum, across two experimental animals. For the purposes of

their analysis, Zhang et al. slightly modified the MAS4 difference call, naming the revised ver-

sion the DiffCall method. This method combined the mildly increased and the mildly decreased

group with the increased and decreased group, respectively, due to the small number of genes in

the former two categories. It also assigned the category of no change (NC) if either gene in the

comparison was declared “absent” with the MAS4 absolute call, as the MAS4 difference call can

be unreliable in such situations. The S-Score was converted from a continuous to a categorical

measure, which Zhang et al. named the SCall, by setting a threshold δ for the S-Scores. The SCall

label for a gene would be increasing (I) if the S-Score for that gene is greater than δ, decreasing

(D) if the S-Score is less than −δ, and no change (NC) otherwise. For both the SCall and DiffCall

methods, genes that were consistently classified across the two samples (i.e. increased in both

samples or decreased in both samples) were labeled congruent changes, while those not so classi-

fied were labeled non-congruent changes. They also defined the consistency ratio as the number

of congruent changes divided by the number of non-congruent changes, after excluding genes

classified as no change. This ratio was calculated for both methods to quantify the performance

in classifying gene expression changes. The consistency ratio of the S-Score across a variety of

thresholds δ uniformly exceeded that of the DiffCall. Thus, the S-Score offered much greater

consistency than the MAS4 algorithm, but without loss of sensitivity.

In their third study, the S-Score was compared to the logarithm of the fold-change ratio,
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ln (Fc) = ln (AvgDi f f2/AvgDi f f1) for gene expression under conditions 1 and 2. Comparisons

were made between dissimilar brain regions, prefrontal cortex versus ventral tegmentum, across

four experimental animals. In calculating the ln (Fc), Zhang et al. excluded from the calculations

all genes that were declared absent across all eight of the samples. Next, all AvgDiff values

that were below the background noise level were set equal to the background noise. Finally,

they excluded all genes with |ln (Fc)| < ln (2), or less than two-fold change, across all prefrontal

cortex versus ventral tegmentum comparisons. The remaining 867 genes were then subjected to

average linkage cluster analysis. The S-Score was found to produce “tighter” clusters than the

ln (Fc), with the average correlation coefficient across clusters of R = 0.91 for the former and R =

0.70 for the latter (p < 10−10, Fisher’s Z-transformation). Similarly, the correlation coefficient

between experimental animals for the S-Score was much higher (R = 0.91) than that of ln (Fc)

(R = 0.71), again without loss of sensitivity. Finally, the S-Score and ln (Fc) were compared for

four brain regions, prefrontal cortex, ventral tegmentum, hippocampus, and nucleus accumbens,

across four experimental animals using cluster analysis. For the ln (Fc), genes with a MAS4

absolute call of “absent” across all 16 samples and genes having a variance of ln (Fc) below an

unspecified arbitrary threshold were excluded from the analysis. The S-Scores were generated by

comparing each of the 16 samples to an “average” CEL file created by averaging the intensities

on the probe level across the 16 samples. Both the S-Score and the ln (Fc) produced initial

clusters that grouped samples by brain region. However, the S-Score produced tighter clusters,

more accurately reflecting the homogeneity within a brain region and heterogeneity between brain

regions. The average correlation between samples within a brain region was 0.80 for the S-Score

and 0.52 for ln (Fc). The S-Score also had higher correlation between genes within a cluster; the

number of genes with a highly correlated nearest-neighbor, defined as R > 0.90, was 302 for the

S-Score but 274 for ln (Fc). A total of 231 genes with differential expression between prefrontal

cortex and ventral tegmentum were identified using a cutoff of the absolute value of the S-Score

exceeding 2.5. Of the 29 showing the most distinctive changes, 20 of these had previous studies

in the literature (mostly using in situ hybridization (ISH)) to corroborate the finding of differential

expression. Thus, the S-Score also offered greater specificity than the ln (Fc), but without loss of
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sensitivity.

Kerns et al. (2003) replicated and extended some of these findings in additional validation

studies. They compared expression profiles between different brain regions (prefrontal cortex

versus nucleus accumbens) and similar brain regions (nucleus accumbens versus nucleus accum-

bens) across experimental animals, similar to the first validation study of Zhang et al. Again,

there were significant reproducible differences in the former case, with correlation coefficient of

R2 = 0.65; but little reproducible differences in the latter case, with correlation coefficient of

R2 = 0.00002. They also compared the S-Score to the log2-fold change produced by the Affy-

metrix MAS5 algorithm. Although many genes showed similar changes with the S-Score and

MAS5, a number of genes with large fold change values had S-Scores near zero. Subsequent

analysis showed that these genes were largely declared “absent”, indicating the greater specificity

of the S-Score values compared to MAS5.

Kennedy et al. (2006a) provide further validation of the S-Score by comparing it to RMA,

dChip, and MAS5. Data for this study were drawn from two spike-in datasets publicly available

from GeneLogic, Inc. using the human U95 GeneChip (http://www.genelogic.com/newsroom/

studies/). For both datasets, a common complex complementary ribonucleic acid (cRNA) de-

rived from an acute myeloid leukemia (AML) tumor cell line was used as background. Clones

from different regions of 4 bacterial genes (BioB, BioC, BioD, and Dap) and of 1 phagemid gene

(Cre) were then spiked into the samples at known concentrations. For the first dataset, called

the Dilution dataset, 10 different clones were spiked into the hybridization cocktail at the same

concentration on each array, with the 11th clone (CreX-3) used as a control at 0pM across arrays

(Table 2.1). There were 1 to 3 replicates for each concentration level. For the second dataset,

called the AML Latin Square dataset, 11 clones were spiked into the hybridization cocktail using

different concentrations arranged in a Latin Square design (Table 2.2). There were 2 to 3 replicates

at each concentration level. The use of spike-in datasets permits assessment when the true condi-

tions of differential expression are known, a definite advantage in comparing the performance of

algorithms.

For the Dilution dataset, comparisons of sensitivity and specificity were obtained by plotting

http://www.genelogic.com/newsroom/studies/
http://www.genelogic.com/newsroom/studies/
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Table 2.1: Concentration Data for the GeneLogic Dilution Dataset
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Table 2.2: Concentration Data for the GeneLogic AML Latin Square Dataset
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the S-Score values against the other three algorithms. Ideally, algorithms would show a clear

separation between the values for the spike-in genes and remaining genes, indicating that the

algorithm can distinguish between the two conditions. Such distinctions are expected to be less

clear at lower RNA concentrations due to the diminished signal from the spike-in genes. The

S-Score clearly separated the spike-in clones from the other probe sets at concentrations of 3pM

and greater, with some loss of accuracy at lower concentrations. The RMA expression summary

values also showed clear separation, although this did not occur until concentrations of 12.5pM

and greater (Figure 2.1). The MBEI values produced by dChip did not show total separation at

any concentration, though performance was notably better with concentrations of 5pM and greater

(Figure 2.2). MAS5 p-values did not provide total separation at any concentration (Figure 2.3).

For the AML Latin Square dataset, the observed ranks of the spike-in clones were compared

to their true underlying rank, based on the known fold-change, for each algorithm. This requires

designation of one chip as a baseline to which all other chips are compared in the fold-change

calculation. Chip 92561 was selected as the reference array, though similar results were obtained

when other chips were used as a reference. Ideally, the observed rank should equal the true rank,

and an algorithm would rank all 11 spike-in clones in the top 11 genes declared differentially

expressed. The proportion of spike-in clones ranked in the top 11 for each method was calcu-

lated, and the proportions for the S-Score were compared to those of the other three algorithms

using the Cochran-Mantel-Hanzel test (Table 2.3). The MAS5 algorithm had the highest propor-

tion of clones ranked in the top 11, but also exhibited excessively high sensitivity, with difficulty

separating the clones from other genes despite obvious differences in fold-change. The differ-

ences between the two algorithms was not statistically significant, χ2 (1) = .40, p > 0.52. The

observed ranks for the S-Score were generally much closer to the true underlying ranks than the

ranks for RMA and dChip. The proportion of clones ranked in the top 11 was also significantly

higher (χ2 (1) = 17.88, p < 0.001 compared to RMA, χ2 (1) = 21.33, p < 0.001 compared to

dChip). After three chips of questionable quality were excluded, the performance of the S-Score

was similar to that of RMA and MAS5 (p > 0.51 for the former and p > 0.26 for the latter).

Taken together, these two spike-in studies showed that the S-Score offers excellent sensitivity and
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Figure 2.1: Comparison of S-Score and RMA. Plot of absolute value of S-Score vs absolute
value of difference in RMA expression summaries, comparing the specified concentration to the
baseline chip. X- and Y-axis projections are added to show separation of spike-in probes more
clearly. From Kennedy et al. (2006a), used with permission.
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Figure 2.2: Comparison of S-Score and dChip. Plot of absolute value of S-Score vs absolute value
of difference in base 2 logarithm of dChip model-based expression index, comparing the specified
concentration to the baseline chip. X- and Y-axis projections are added to show separation of
spike-in probes more clearly. From Kennedy et al. (2006a), used with permission.
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Figure 2.3: Comparison of S-Score and MAS5. Plot of absolute value of S-Score vs MAS5
p-values, comparing the specified concentration to the baseline chip. MAS5 p-values were trans-
formed so that significantly up- and down-regulated genes will have p-values approaching 0.
X- and Y-axis projections are added to show separation of spike-in probes more clearly. From
Kennedy et al. (2006a), used with permission.
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GeneChip Array S-Score RMA dChip MAS5
92562 4 (0.36) 4 (0.36) 4 (0.36) 4 (0.36)
92563 8 (0.72) 4 (0.36) 4 (0.36) 7 (0.64)
92564 8 (0.72) 0 (0.00) 2 (0.18) 8 (0.72)
92558 10 (0.90) 10 (0.90) 8 (0.72) 11 (1.00)
92559 11 (1.00) 9 (0.81) 9 (0.81) 11 (1.00)
92560 9 (0.81) 7 (0.63) 7 (0.63) 9 (0.81)
92554 10 (0.90) 8 (0.72) 6 (0.54) 11 (1.00)
92555 11 (1.00) 9 (0.81) 9 (0.81) 11 (1.00)
92556 10 (0.90) 9 (0.81) 7 (0.63) 11 (1.00)
92557 10 (0.90) 5 (0.45) 5 (0.45) 11 (1.00)

Table 2.3: Number and proportion of spike-in clones detected using chip 92561 as baseline.
Comparison of S-Score vs. RMA, p < 0.001; vs. dChip, p < 0.001; vs. MAS5, p = 0.40.

specificity compared to RMA, dChip, and MAS5.

2.4 Limitations

While the S-Score algorithm successfully implements probe-level analysis for Affymetrix data,

limitations are present. The original implementation only allows comparisons between pairs of

microarray chips. Although many early studies only had single chips for analyzing each con-

dition, replicate data are necessary for discerning true gene expression changes from artifacts.

Current guidelines suggest three or more chips per condition to achieve satisfactory results. For

the S-Score algorithm to be a useful method in the analysis of microarray data, it must be capa-

ble of analyzing experiments following these recommendations and incorporating replicate chips.

At the same time, most experiments with replicates still have relatively small sample sizes (Jain

et al., 2003), so the S-Score algorithm must still achieve substantial accuracy with only a small

number of chips.

A second potential limitation concerns the error model used in the calculation of the S-Score.

Although the accuracy of this model appears to be good, two of the key parameters, γ and bv, are

ad hoc in nature rather than mathematically rigorous. It is hoped that a more rigorously derived

analogue for these quantities would give even greater accuracy in the detection of differential
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gene expression. Furthermore, if the newly defined error model should prove inferior the the one

currently used in the S-Score, this would prompt further investigation to discover the relevant

biological characteristics of microarrays that must be incorporated into existing mathematical

models.
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Chapter 3

The Random Variance Model Algorithm

3.1 Development

The Random Variance Model algorithm (Wright and Simon, 2003) was developed as a method

that may yield more accurate estimates of gene expression variances, and hence test statistics, for

microarray datasets differences with small sample sizes. The RVM is based on the assumption

that the variances of the intensity measurements vary from probeset to probeset, but represent

random selections from a common distribution. Such an approach allows sharing of information

across probesets and is expected to produce more accurate estimates for use in hypothesis testing.

The RVM algorithm utilizes a GLM framework for testing. Let yms represent the appropriate

intensity measurement for microarray m and probeset s. The preprocessing steps for these inten-

sities are not specified, although they may be normalized or log-transformed if desired. The GLM

for the intensities is

yms
1×1

= x′m
1×k

βs
k×1

+ εms
1×1

where each x is a vector of design variables for the array m, each βs is a vector of k unknown

coefficients for the probeset s, and εms is a random error term. The design vector x and the

coefficient vector β would encompass the probeset effect, array effect, condition effect, and other

56
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such terms in the GLMs previously discussed. In vector terms, the GLM is

y
n×1

= X′
n×k

β
k×1

+ ε
n×1
. (3.1)

In simple linear regression, it is assumed ε ∼ N
(
0, σ2

)
, where σ2 is a constant term for all levels

of x. The underlying assumption for RVM is

εms ∼ N
(
0, σ2

s

)
where here, the σ2

s are realizations of the random variable σ2 having an inverse gamma distribu-

tion, or more formally

σ−2 ∼ Gamma (x; a, b) ≡
1

Γ (a) ba xa−1 exp (−x/b) (3.2)

where the unknown hyperparameters a and b are estimated from the data. Although the formula-

tion of RVM is frequentist, it should be noted that the inverse gamma distribution is also the usual

choice as a prior for variances in Bayesian analysis.

The assumptions regarding the distribution of σ2 leads naturally to a modification of the sums

of squares for traditional hypothesis tests, as shown in the following theorems. Furthermore, it

may be shown that the sample data can be used to obtain estimates of the hyperparameters a and

b. Since the original proofs for RVM are given in supplemental material, rather than in the pub-

lished manuscript, and contain some typographical errors (G. Wright, personal communication),

a detailed derivation is presented below.

Using the model in Equation (3.1), the hypotheses to be tested are H0 : β ∈ ω versus H1 :

β ∈ Rk, where ω is a linear subspace of Rk. The null hypothesis imposes r ≡ k − dim (ω) linear

constraints on the model. In standard general linear models, where there are no distributional
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assumptions on σ, the maximum likelihood estimate (MLE) for β under H1 is

β̂ =
(
X′X

)−1 X′y.

Under H0, the MLE is

̂̂
β =

(
X′ωXω

)−1 X′ωy

where Xω is the design matrix X projected into the subspace ω. The modified test under RVM

is then given by the following theorem by Wright and Simon. As in the original manuscript, the

subscript s will be suppressed throughout the proof for simplicity.

Theorem 3.1. Under RVM, the likelihood ratio test statistic F̃ for testing H0 : β ∈ ω versus

H1 : β < ω is of the form,

F̃ =
n − k + 2a

r

 ̂̂S S − Ŝ S

S̃ S

 (3.3)

where ̂̂S S , Ŝ S , and S̃ S are the sums of squares under H0, H1, and RVM, respectively, defined as

Ŝ S =
(
y − X′β̂

)′ (
y − X′β̂

)
,

̂̂S S =

(
y − X′̂̂β)′ (y − X′̂̂β) , (3.4)

and

S̃ S = Ŝ S + 2b−1.
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Proof. The density function of y under the linear model is

f (y | β, σ) =

(
1

2πσ2

)n/2

exp
(
−

1
2σ2

(
y − X′β

)′ (y − X′β
))

Letting z = σ−2 and including the distributional assumptions on σ−2 as presented in Equa-

tion (3.2), this becomes

f (y | β, z) =

( z
2π

)n/2
exp

(
−

z
2

(
y − X′β

)′ (y − X′β
))

Γ (z; a, b)

=

( z
2π

)n/2
exp

(
−

z
2

(
y − X′β

)′ (y − X′β
)) za−1 exp (−z/b)

Γ (a) ba .

Note that the supplemental material accompanying the original manuscript contains a typograph-

ical error, with the exponent of the first term given as 2 rather than n/2; this affects some inter-

mediate results but it does not affect the final result of the theorem. This simplifies to

f (y | β, z) =

(
1

2π

)n/2 1
Γ (a) ba zn/2+a−1 exp

(
−z

(
1
2

(
y − X′β

)′ (y − X′β
)

+ b−1
))

= c1z(n+2a−2)/2 exp
(
−z

(
1
2

(
y − X′β

)′ (y − X′β
)

+ b−1
))

where the term

c1 =

(
1

2π

)n/2 1
Γ (a) ba

is a scaling constant.

The joint likelihood for β and z is

L (β, z | y) = c1z(n+2a−2)/2 exp
(
−z

(
1
2

(
y − X′β

)′ (y − X′β
)

+ b−1
))

(3.5)
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with the log likelihood

log L (β, z | y) = c1 +
n + 2a − 2

2
log z −

z
2

(
y − X′β

)′ (y − X′β
)
− zb−1. (3.6)

Differentiation yields

∂

∂β
log L (β, z | y) = −

z
2

(
0 − 2X′y + 2X′Xβ

)
(3.7)

and

∂

∂z
log L (β, z | y) =

n + 2a − 2
2z

−
1
2

(
y − X′β

)′ (y − X′β
)

+ b−1. (3.8)

To obtain the maximum likelihood estimates ̂̂
β and̂̂z under H0, setting Equation (3.7) to 0 implies

−2X′ωy + 2X′ωXω
̂̂
β = 0

̂̂
β =

(
X′ωXω

)−1 X′ωy.

Under H0, setting Equation (3.8) to 0 implies

n + 2a − 2

2̂̂z
=

1
2

(
y − X′β

)′ (y − X′β
)
− b−1

n + 2a − 2

2̂̂z
=

(y − X′β)′ (y − X′β) − 2b−1

2
.

Cross-multiplication yields

2 (n + 2a − 2) = 2̂̂z
((

y − X′β
)′ (y − X′β

)
− 2b−1

)
.
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Substituting ̂̂S S from Equation (3.4) and solving for̂̂z gives

̂̂z =
n + 2a − 2̂̂S S + 2b−1

.

The corresponding maximum likelihood is

max
z∈R+,β∈ω

L (β, z | y) =

(
1

2π

)n/2 1
Γ (a) ba exp

(
−

n + 2a − 2
2

) n + 2a − 2̂̂S S + 2b−1

(n+2a−2)/2

= c2

n + 2a − 2̂̂S S + 2b−1

(n+2a−2)/2

where

c2 =

(
1

2π

)n/2 1
Γ (a) ba exp

(
−

n + 2a − 2
2

)

is a constant. Similarly, under H1, the quantity in Equation (3.6) is maximized when

β̂ =
(
X′X

)−1 X′y

and

ẑ =
n + 2a − 2

Ŝ S + 2b−1

with the corresponding maximum likelihood

max
z∈R+,β∈Rk

L (β, z | y) =

(
1

2π

)n/2 1
Γ (a) ba exp

(
−

n + 2a − 2
2

) (
n + 2a − 2

Ŝ S + 2b−1

)(n+2a−2)/2

= c2

(
n + 2a − 2

Ŝ S + 2b−1

)(n+2a−2)/2

where c2 is a constant.
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The likelihood ratio test is then

max
z∈R+,β∈Rk

L (β, z | y)

max
z∈R+,β∈ω

L (β, z | y)
> δ

which reduces to

 ̂̂S S + 2b−1

Ŝ S + 2b−1


(n+2a−2)/2

> δ.

This is equivalent to

̂̂S S + 2b−1

Ŝ S + 2b−1
> δ2/(n+2a−2). (3.9)

Subtracting
(
Ŝ S + 2b−1

)
/
(
Ŝ S + 2b−1

)
from both sides of Equation (3.9) yields

̂̂S S + 2b−1 −
(
Ŝ S + 2b−1

)
Ŝ S + 2b−1

> δ2/(n+2a−2)
− 1,

which simplifies to

̂̂S S − Ŝ S

S̃ S
> δ2/(n+2a−2)

− 1.

Thus the test rejects if

F̃ =
n − k + 2a

r

 ̂̂S S − Ŝ S

S̃ S

 > n − k + 2a
r

(
δ2/(n+2a−2)

− 1
)

; (3.10)

therefore F̃ is a likelihood ratio test statistic. �

However, to use Equation (3.10) for testing under the general linear hypothesis requires addi-
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tional information. Define

σ̂2 =
Ŝ S

n − k

and

σ̃2 =
S̃ S

n − k + 2a
.

For GLM with no assumptions on σ2, (n − k) σ̂2/σ2 is distributed as χ2
n−k and is statistically inde-

pendent of the value in the numerator of the ratio in Equation (3.10). (Note that the supplemental

material contains a typographical error, stating that (n − k) σ̃2/σ2 follows this distribution rather

than (n − k) σ̂2/σ2.) It immediately follows that σ̃2 is statistically independent of the numera-

tor in Equation (3.10), as σ̃2 depends on the data only through σ̂2. The next theorem gives the

distribution of σ̃2 and shows how estimates of a and b may be found using the sample data.

Theorem 3.2. For σ̂2 and σ̃2 as above,

(n − k + 2a)
σ̃2

σ2 ∼ χ
2
n−k+2a

and

ab
(
σ̂2

s

)
∼ Fn−k,2a. (3.11)

Proof. From standard ANOVA theory, for fixed σ2

(
(n − k)

σ̂2

σ2

)
∼ χ2

n−k.

Let K = n− k. Using a standard change of variables formula from Kσ̂2/σ2 to σ̂2, the distribution
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of σ̂2 is

σ̂2 ∼
K
σ2χ

2
K

(
Kσ̂2

σ2

)
.

The density function of σ̂2 is

f
(
σ̂2

)
=

K
σ2Γ (K/2) 2K/2

(
Kσ̂2

σ2

)K/2−1

exp
(
−Kσ̂2

2σ2

)
.

Let z = σ−2. Under RVM assumptions, z ∼ Gamma (a, b), so that the joint density of σ̂2 and z is

f
(
σ̂2, z

)
= f

(
σ̂2|z

)
f (z)

=
zK

Γ (K/2) 2K/2

(
zKσ̂2

)K/2−1
exp

(
−zKσ̂2

2

) (
za−1 exp (−z/b)

Γ (a) ba

)

(Note that the supplemental material contains a typographical error, referring to the joint distri-

bution of σ2 and z rather than σ̂2 and z.)

Removing the constant terms and grouping the z and exponential terms gives

f
(
σ̂2, z

)
∝

(
σ̂2

)K/2−1
exp

(
−z

(K
2
σ̂2 + b−1

)) (
zK/2+a−1

)
.

Then

f
(
σ̂2, z

)
∝

(
σ̂2

)K/2−1
(K

2
σ̂2 + b−1

)1−(K/2+a)

exp
(
−z

(K
2
σ̂2 + b−1

)) (
z
(K

2
σ̂2 + b−1

))K/2+a−1

(3.12)

since

(K
2
σ̂2 + b−1

)1−(K/2+a) (
z
(K

2
σ̂2 + b−1

))K/2+a−1

= (z)K/2+a−1
(K

2
σ̂2 + b−1

)1−(K/2+a)+K/2+a−1

= zK/2+a−1.

(Note that the supplemental material contains a typographical error, in that the exponent K/2+a−1
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in Equation (3.12) should follow the second set of parentheses in the last term rather than the first

set.)

Let

u = z
(
Kσ̂2 + 2b−1

)
= (n − k + 2a)

σ̃2

σ2

and

v = abσ̂2.

Applying standard change of variables with the Jacobian equal to (ab)−1
(
Kv (ab)−1 + 2b−1

)−1
=

(Kv + 2a)−1 gives the joint density

f (u, v) =

( v
ab

)K/2−1 ( Kv
2ab

+ b−1
)1−(K/2+a)

exp
(
−

u
2

) (u
2

)(K+2a)/2−1
(Kv + 2a)−1 .

Separating the first term, factoring b−1 from the second term, and factoring 2a−1 from the last

term gives

f (u, v) =

(
1

ab

)K/2−1

vK/2−1 exp
(
−

u
2

) (u
2

)(K+2a)/2−1 [(Kv
2a

+ 1
)

b−1
]1−(K/2+a) (Kv

2a
+ 1

)−1

(2a)−1 .

(Note that the supplemental material contains a typographical error, as the denominator in the last

term should be 2a rather than a.) After combining the second and third to the last terms,

f (u, v) =

(
1
ab

)K/2−1 (
b−1

)1−(K/2+a)
(2a)−1 vK/2−1 exp

(
−

u
2

) (u
2

)(K+2a)/2−1 (Kv
2a

+ 1
)−(K/2+a)

.

Combining the a and b terms gives

f (u, v) =
1
2

(
1
a

)K/2

b−avK/2−1 exp
(
−

u
2

) (u
2

)(K+2a)/2−1 (Kv
2a

+ 1
)−(K/2+a)

.
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Eliminating the constant terms, this becomes

f (u, v) ∝ (v)K/2−1
( K
2a

v + 1
)−(K/2+a)

exp
(
−

u
2

) (u
2

)(K+2a)/2−1
.

Using the definition of the F and χ2 distributions, it can be seen that

f (u, v) ∝ FK,2a (v) · χ2
K+2a (u) . (3.13)

(Note that the supplemental material contains a typographical error, giving the first distribution

as F2a,K (v) rather than FK,2a (v).) The density in Equation (3.13) is easily factored into the two

separate densities

f (u) ∝ χ2
K+2a (u)

and

f (v) ∝ FK,2a (v) .

Thus (n − k + 2a) σ̃2

σ2 ∼ χ
2
n−k+2a and ab

(
σ̂2

s

)
∼ Fn−k,2a. �

3.2 Implementation

Combining the results of Theorems 3.1 and 3.2, it can be seen that the RVM algorithm can be

applied to a wide variety of GLMs by adjusting the residual sums of squares and the residual

degrees of freedom. Furthermore, estimates of the hyperparameters a and b can be obtained from

σ̂2, the residuals from the standard GLM (without any assumptions on the distribution of the

variances), using a numerical maximization routine.

The RVM algorithm does not constitute a specific software package, but an approach that

may be applied to a variety of statistical problems. The RVM algorithm is easily applied to
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class comparison problems for determining differential gene expression between experimental

conditions. In the above formulae, k would equal the number of conditions, and xm would be an

indicator variable signifying the condition of chip m. With k = 2 conditions, the GLM reduces to

the familiar t-test. For the two-sample comparison, let n1 and n2 be the sample sizes for conditions

1 and 2, µ̂1 and µ̂2 be the sample means, and σ̂2
1 and σ̂2

2 be the sample variances. Under the

standard GLM (with no assumptions on σ̂2
1 and σ̂2

2), the pooled sample variance is

σ̂2
pooled =

(n1 − 1) σ̂2
1 + (n2 − 1) σ̂2

2

n1 + n2 − 2

and the test statistic is

t =
µ̂1 − µ̂2

σ̂pooled
√

1/n1 + 1/n2
∼ tn−2

Under RVM, the modified sample variance becomes

σ̃2
pooled =

(n − 2) σ̂2
pooled + 2b−1

(n − 2) + 2a

and the modified test statistic is

t̃ =
µ̂1 − µ̂2

σ̃pooled
√

1/n1 + 1/n2
∼ tn−2+2a

For comparing k > 2 conditions, the GLM uses the F-statistic

F =

(̂̂S S − Ŝ S
)
/r

Ŝ S / (n − k)
∼ Fr,n−k

Under RVM, this becomes the modified F-statistic given in Equation (3.3)

F̃ =

(̂̂S S − Ŝ S
)
/r

S̃ S / (n − k + 2a)
∼ Fr,n−k+2a
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Both the modified t and F-tests are implemented in the BRB-ArrayTools software package,

which has been used extensively in the analysis of microarray data (see http://linus.nci.nih.gov/

BRB-ArrayTools.html). The RVM framework extends in an analogous fashion to more compli-

cated GLMs, although such formulations have not been presented in the original manuscript or

subsequent publications.

3.3 Performance Assessment

Wright and Simon (2003) also provided initial simulation studies of the RVM algorithm, as well

as applications to experimental datasets. The first simulated data set consisted of 6000 probesets

from two groups with five samples in each group. This simulation design was repeated 2000

times. For each probeset s, the variance σ2
s was randomly generated from an inverse gamma

distribution using the parameters a = 3 and b = 1. Intensities for each probeset were then

randomly generated from a normal distribution with mean 0 and variance σ2
s . For 3000 of the

6000 probesets, an amount between 0.1 and 2.0 was added to the intensities of the first group

to represent differential expression between the two groups. A similar procedure was used to

construct a simulated data set with 10 samples per group. Testing was then performed using a one-

sided, two-sample t-test between groups. Three different methods were used for estimating the

variance for the t-test: first, the pooled variance was used as the variance for all probesets; second,

an individual variance was estimated separately for each gene; and third, the RVM algorithm was

used to estimate variance. The first method produced an excessively high false-positive rate,

while the last two had type I errors that were close to their expected values. However, the RVM

algorithm had greater power for detecting a true difference in expression compared to the gene-

level variance method, particularly for the smaller sample size of 5 arrays per group.

The performance of the RVM algorithm was also examined using actual data sets. Two data

sets were used in this study: the DLBCL data set from Rosenwald et al. (2002), which consists of

7399 genes measured on 274 Lymphoma samples divided among three conditions; and the BRCA

data set from Hedenfalk et al. (2001), which consists of 3226 genes measured on 22 breast cancer

http://linus.nci.nih.gov/BRB-ArrayTools.html
http://linus.nci.nih.gov/BRB-ArrayTools.html


www.manaraa.com

69

samples divided among three conditions. For both data sets, the RVM estimates of the sample

variances fitted the F distribution in Equation (3.11) well. Examination of the goodness-of-fit to

the F distribution was chosen as it is impossible to obtain the true within group variances to de-

termine if these follow the inverse gamma distribution given by the RVM algorithm. Subsequent

analyses examining type I error and power were restricted to two conditions from the DLBCL

data set. Given the large sample size, it was assumed that t-tests conducted using the full data for

the two conditions could accurately identify differential expression. Genes with missing values

of greater than 20% in the total data were excluded from analyses, leaving 6027 genes. The 1621

genes with p < 0.0001 were declared differentially expressed; the 2916 genes with p > 0.05

were declared nondifferentially expressed; and the 1490 genes with 0.05 > p > 0.001 were de-

clared indeterminate and not used in calculations of type I error or power. Next, 2000 repeated

sub-samples of size 5 from each group were randomly chosen, and the p-value for the expression

difference between conditions for each gene was computed. The number of significant p-values

at different thresholds was compared to the number of significant p-values for the full data set to

determine the type I error rate and power. A similar procedure was performed using sub-samples

of size 10 from each group. Variances for the t-test of the subsamples were estimated using

the pooled variance, the gene-level variance, and the RVM variance as in the simulation study.

Again, the first method showed an excessively high false-positive rate, while the last two had rates

that were similar to expected values. The RVM algorithm had greater power for detecting true

differences in expression, especially for smaller sample sizes.

3.4 Limitations

Although the RVM method shows considerable promise for the analysis of gene expression and

has been used in a number of experimental studies, there are limitations to address. The RVM

method is a probeset-level analysis, rather than a probe-level analysis, so that there is a potential

reduction in accuracy due to the use of expression summary values. The current implementation

of the RVM method is unsuitable for analyzing probe-level data, as it assumes that error terms
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in the model are independent of each other. Such an assumption is unrealistic for probes that are

intended to target different regions of the same gene. The independence assumptions applied to

probes within a probeset would lead to inflated variance estimates, as predicted by GLM theory,

and reduced power for detecting differential expression. A more accurate model, which captures

the correlation among the probes in a probeset, is necessary to overcome this problem.

A second potential limitation of the RVM method is the quality of the validation studies. The

random variance model does appear to model the sample variances well, and the available sim-

ulation and experimental studies indicate that it has an acceptable level of accuracy in detecting

differential gene expression. However, studies of the RVM method using spike-in data sets have

not been conducted to date. Its accuracy has also not been compared to other class comparison

methods beyond the pooled and individual variance t-tests. Further studies addressing this issue

are warranted to establish clearly the relative merits of the RVM method.
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Extending Error Models

4.1 Introduction

Hypothesis testing for differential gene expression requires an estimate of the variance (or error)

associated with the measurement of the expression values. Three fundamental approaches may be

used to obtain such estimates. The first is a nonparametric approach, which assumes an underlying

model for the variances exists but does not require the form of the model be specified. The

second is a parametric approach that assumes the variances follow a given distribution that may

be modeled, but does not impose a specific model on the intensities for the array. The third is

a parametric approach that assumes a given distribution for the array intensities; based on the

information from modeling the intensities, an estimate of the variances is also obtained. Each of

these three approaches has its own advantages, and each is used in this research project.

71
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4.2 Nonparametric Error Models

The nonparametric model for the variances associated with GeneChip intensity measurements as-

sumes an underlying distribution of the variances exists that allows the variances to be computed,

but does not require an explicit mathematical formulation of the distribution. The nonparamet-

ric approach is implicit in the original S-Score error model described by Equation (2.2), which

assumes that probes with similar intensities would have similar variances. Thus, probes with

similar intensities may be grouped together to obtain estimates for the variances without specific

knowledge of the distribution of the variances.

A straightforward extension to the original S-Score error model is to assume that an individual

probe will have the same expected intensity across multiple independent chips in the absence of

differential expression, so that any variation would represent random rather than systematic error.

Under this assumption, a measure of central tendency across chips can be used to estimate the

true signal intensity. As the S-Score algorithm excludes outliers from its calculations, use of

the mean as a measure of central tendency should be satisfactory. Convergence of the mean to

the true signal value is assured under the Central Limit Theorem (CLT), although the rate of

convergence varies depending on the nature of the underlying distribution. If the majority of

probes are normally distributed in the absence of differential gene expression (Giles and Kipling,

2003), convergence would be rapid. Continuing the assumption of the original S-Score that probes

with similar intensities also have similar variances, the error model in Equation (2.2) can be

modified to accommodate more than two chips at a time.

This multichip S-Score groups the arrays in an experiment into two conditions 1 and 2, with

each condition having multiple chips. Thus Nc = 2 as in the original S-Score, but Nm may be any

positive number. The background noise estimates for condition c are defined as

bv
2
1 =

1
N2

1

N1∑
m=1

bv2
1m and bv

2
2 =

1
N2

2

N2∑
m=1

bv2
2m

where bvcm is the background estimate for the individual GeneChip in condition c. Similarly, the



www.manaraa.com

73

signal intensities for probe pair p are defined as

y1sp =
1

N1

N1∑
m=1

y1msp and y2sp =
1

N2

N2∑
m=1

y2msp

where ycmsp = PMcmsp − MMcmsp is the PM − MM difference for the individual Genechip in

condition c. Using the proxy variance estimate from Equation (2.5),

var
(
y1sp

)
= var

 1
N1

N1∑
m=1

y1msp


=

1
N2

1

N1∑
m=1

var
(
y1msp

)
=

1
N2

1

N1∑
m=1

y2
1msp

and similarly for y2sp. These estimates are used in the computation of a revised error term analo-

gous to Equation (2.2)

εsp =

√√
γ2

 Nc∑
c=1

 1
N2

c

Nm∑
m=1

y2
cmsp

 +

Nc∑
c=1

bv
2
c (4.1)

and a revised S-Score statistic analogous to Equation (2.4)

S s =

Np∑
p=1

y2sp − y1sp

αεsp
√

Np
. (4.2)

Under the assumptions of the original S-Score, the multichip S-Score statistic in Equation (4.2) is

also normally distributed. With the appropriate choice of α, the distribution of the statistic would

be the standard normal, allowing cutoff values recommended for the original S-Score to be used

with the multichip version.

The distribution of the multichip S-Score remains empirically, rather than theoretically, based.

However, the S-Score algorithm does have similarities to established results. If the number of

chips in conditions 1 and 2 are equal, denoted as the number of chips in a condition Nm, then
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Equation (4.2) may be rewritten as

S s =
1

α
√

Np

Np∑
p=1

1
Nm

Nm∑
m=1

y2msp −
1

Nm

Nm∑
m=1

y1msp√√
γ2

 1
N2

m

Nm∑
m=1

y2
1msp +

1
N2

m

Nm∑
m=1

y2
2msp

 +
1

N2
m

Nm∑
m=1

b2
1m +

1
N2

m

Nm∑
m=1

b2
2m

=
1

α
√

Np

Np∑
p=1

Nm∑
m=1

y2msp −

Nm∑
m=1

y1msp√√
γ2

 Nm∑
m=1

y2
1msp +

Nm∑
m=1

y2
2msp

 +

Nm∑
m=1

b2
1m +

Nm∑
m=1

b2
2m

=
1

α
√

Np

Np∑
p=1

Nm∑
m=1

(
y2msp − y1msp

)
√√

Nm∑
m=1

[
γ2

(
y2

1msp + y2
2msp

)
+ b2

1m + b2
2m

] . (4.3)

Sums in the form of the summand in Equation (4.3) can generally be shown to follow a standard

normal distribution, provided that the variance of the individual random variables is finite and no

single variance term dominates the sum. Such generalizations of the CLT are discussed in depth

in Billingsley (1986, chapter 27) and Resnick (1999, Section 9.8), which also describe specific

conditions necessary for the theorems to hold. Unfortunately, these results do not constitute a

proof of the distribution for the S-Score statistic, as the proxy in Equation (2.5) has not been

established as a proper estimator for the variance of the intensities. However, these results do

suggest that such a proof may be possible, though the variance estimator may need to be altered.

One of the central problems in estimating the probe-level variance in Equation (2.2) is that

there is only one observation for each probe on a chip, so that the variance cannot be computed

with the usual formulae. Jain et al. (2003) have proposed an method of estimating probeset-level

variances with small numbers of replicates, which they call the local pooled error (LPE), that may

be readily adapted from a probeset-level to a probe-level model. The LPE method assumes that

probesets with similar intensities will have similar variances, in keeping with the intensity-based

error model used in the S-Score. It is based on information from the MA plot, a standard plot for
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examining patterns of intensity variation across chips (Dudoit et al., 2002). For a pair of chips, the

MA plot depicts the difference between the log intensities (designated as M) versus the average

of the log intensities (designated as A). With two observations, the difference is proportional to

the square root of the variance, so the MA plot provides information about the variability of the

chips as a function of mean intensity (Jain et al., 2003). The LPE algorithm constructs an error

distribution function for the probeset intensities using a nonparametric local regression to fit the

differences versus the averages.

The LPE method is described in Algorithm 4.1. Specific points of this algorithm deserve

further discussion. First, assuming no differential expression exists within a condition, the ex-

pected value of the differences E (lm) = 0, but the mean of the differences using only distinct

pairs of arrays may differ significantly from 0 due to stochastic error. The LPE method includes

all pairwise comparisons in the calculation of lm and y, which guarantees that the mean of lm

will be zero. However, it requires that the variances be adjusted by a constant factor to account

for this duplication. Second, it is possible to have variance estimates with a small negative value

after fitting the nonparametric regression, particularly for the lower intensity range where many

probesets may have similar intensity values. The LPE method corrects for this by imputing the

lowest observed variance to any negative values, a reasonable though admittedly arbitrary prac-

tice. Finally, the upper tail of the average intensities y is are sparsely populated. As the quantiles

contain approximately the same number of observations, the upper quantiles contain a large range

of values. The variance within these quantiles may be spuriously high, as intensities over such a

large range would be expected to have dissimilar variances. To compensate for the excessively

large estimates of variances for the upper tail, Jain et al. (2005) added adaptive intervals to the

LPE method, which is described in Algorithm 4.2. Under the Adaptive Interval (AI) algorithm,

an initial error distribution is obtained by the LPE method with the average intensities grouped by

quantiles. This initial error distribution is used to compute the estimated variance for each gene

based on the median intensity across all chips within a condition. New groups of the average

intensities are then constructed so that all values in the group are within one standard deviation

of the smallest value in the group; more values may be included in the group to ensure that each
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Algorithm 4.1 Local Pooled Error Algorithm
1: Compute differences lm and averages y of the probeset intensities ycms for all pairs of arrays

(m1,m2) in condition c
lmcm1m2 s = log2

ycm1 s

ycm2 s
= log2 ycm1 s − log2 ycm2 s

ycm1m2 s = log2
√

ycm1 sycm2 s = 1
2

(
log2 ycm1 s + log2 ycm2 s

)
2: Divide the averages y for condition c into NQ quantiles Q1,Q2, . . . ,QNQ , with default NQ =

100
3: Pool the differences lm and averages y into NQ − 1 groups Oco, o = 1, 2, . . . ,NQ − 1, based on

quantiles
ycm1m2 s ∈ Oy

cq, lmcm1m2 s ∈ Olm
cq if Qo < ycm1m2 s ≤ Qo+1

4: Compute the median and variance for each group
ξco = median

(
Oy

co

)
σ2

co = var
(
Olm

co

)
5: Obtain the error distribution for condition c by fitting a nonparametric local regression

(smoothing spline) for the variances on the medians
6: Impute the lowest observed variance, min

(
σ2

c1, σ
2
c2, . . . , σ

2
c,NQ

)
, to negative variance estimates

group has a prespecified minimum size. These new groups based on the adaptive intervals are

used to obtain a revised error distribution, and the revised error distribution is used in testing for

differential gene expression.

Algorithm 4.2 Adaptive Interval Algorithm
1: Estimate the baseline variance function for all arrays in condition c using the LPE algorithm
2: Compute the median intensity ξcs for each probeset in condition c
3: Using the baseline variance function, compute variance estimates σcs for each probeset in

condition c
4: Order the median intensities and variances by the median intensity, with the the ordered

medians and variances denoted as ξc(s) and σc(s) respectively
5: Set the lower and upper threshold values for the first interval to ξc(1) and ξc(1) + σc(1)

6: Set the lower and upper threshold values for the next interval to ξc(i) and ξc(i) + σc(i), where
i = min

(
j : ξc( j) ≥ ξc( j−1) + σc( j−1)

)
7: Repeat step 6 until all the data are assigned to intervals
8: Compute the adaptive interval variance function for all arrays in condition c using the LPE

algorithm with the new adaptive intervals

As the LPE method is based on similar assumptions regarding the error distribution for mi-

croarray intensities as the S-Score, features of the former may be incorporated into the latter for

a more mathematically rigorous estimate of the error term. This Pooled S-Score algorithm is

described in Algorithm 4.3. This algorithm does depart from the LPE method in several ways.
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First, rather than computing all pairwise means and differences, the mean intensity is calculated

across each probe for all chips within a condition. This would lead to more accurate estimates

of the average intensity for each probe, but would also lead to fewer observations for computing

the error distribution than using pairwise estimates. However, given that the number of probes on

an array is roughly an order of magnitude greater than the number of probesets, averaging probe

intensities across all chips should still result in sufficient data for fitting the error distribution.

Second, a parametric quadratic function is used in fitting the average intensities to the variances.

This avoids the possibility of negative variance estimates that can occur with the nonparametric

smoothing spline. It is also in keeping with the original S-Score error model and with the empiric

distribution seen in plots of the average intensities for a probe versus the variance of the probe

across chips. Finally, because of the arbitrary nature of some decisions in the AI algorithm, adap-

tive intervals were not used in the Pooled S-Score. Instead, a robust regression was used in fitting

the error model to minimize the influence of outliers.

Algorithm 4.3 Pooled S-Score Error Algorithm
1: Compute averages y of the PM − MM probe intensities ycmsp for all arrays in condition c

ycsp = 1
Nm

(
yc1sp + yc2sp + . . . + yc,Nm,sp

)
2: Divide the averages y for condition c into Q quantiles q1, q2, . . . , qQ, with default Q = 1000
3: Pool the intensities y into O groups Oco, g = 1, 2, . . . ,NQ − 1, based on quantiles

yc1sp, yc2sp, . . . , yc,Nm,sp ∈ Oy
co if Qo < ycsp ≤ Qo+1

4: Compute the 25% trimmed mean and median absolute deviation for each group
µco = mean

(
Oy

co, 0.25
)

σ2
co = MAD

(
Oy

co
)

5: Obtain the error distribution for condition c by fitting robust quadratic regression for the
MAD on the squared trimmed means

6: Compute the error term ε for each probe and use this error term in the calculation of the
S-Score statistic
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4.3 Parametric Error Models for Variances Only

A second type of multivariate error model would be a parametric model similar to the univariate

RVM. This approach requires a distributional assumption, which is made only for the variances

of the probe-level intensities rather than the means and the variances. A multivariate RVM would

incorporate the strength of the univariate RVM by borrowing information across probesets, which

would lead to greater power to detect gene expression differences. However, modeling informa-

tion at the probe level requires several results from multivariate statistical theory to capture the

correlation among probes in a probeset.

4.3.1 Prerequisite Matrix Algebra

Multivariate statistical theory relies heavily on linear and matrix algebra. The topic of matrix al-

gebra relevant to statistics is covered by several authors, including Searle (1982), Graybill (1983),

and Harville (1997). Although much of the material in these reference works is familiar to statis-

ticians, some less commonly known results are needed in the development of the multivariate

RVM model. The next section reviews these results, followed by proofs generalizing the RVM

method to the multivariate case.

4.3.1.1 Basic Results and Definitions

Definition 4.1. Symmetric Matrix. The p × p matrix X is said to be symmetric if X = X′.

Several important properties of symmetric matrices have been noted, including

1. If X1 and X2 are p × p symmetric matrices, then X1 + X2 is symmetric.

2. If X1 is a p × p symmetric matrix and X2 is any p × p matrix, then X′2X1X2 and X2X1X′2

are symmetric.

3. If X1 and X2 are p × p symmetric matrices, the product X1X2 is generally not symmetric.

4. If X is any p1 × p2 matrix, then X′X and XX′ are symmetric.
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Definition 4.2. Positive Definite Matrix. The p × p symmetric matrix X is said to be positive

definite if y′Xy > 0 for all possible vectors y , 0.

Definition 4.3. Positive Semidefinite Matrix. The p× p symmetric matrix X is said to be positive

semidefinite if y′Xy ≥ 0 for all possible vectors y , 0.

Definition 4.4. Nonnegative Definite Matrix. The p × p symmetric matrix X is said to be non-

negative definite if X is either positive definite or positive semidefinite.

Several important properties of positive definite and positive semidefinite matrices have been

described, including

1. If X is nonnegative definite, then X is nonsingular if and only if X is positive definite.

2. If X1 is a p × p positive definite matrix and X2 is a p × p nonnegative definite matrix, then

X1 + X2 is a positive definite matrix.

3. If X1 and X2 are p× p positive semidefinite matrices, then X1 + X2 is positive semidefinite.

4. If X1 is a p × p positive definite matrix and X2 is a p × p matrix, then X2X1X′2 is positive

definite if rank (X2) = p and positive semidefinite if rank (X2) < p.

5. If X is any p × p matrix, then XX′ is positive definite if X is nonsingular and positive

semidefinite if X is singular.

Definition 4.5. Trace of a Matrix. Let X be a p × p matrix. The trace of X, denoted as Tr (X), is

defined as

Tr (X) =

p∑
i=1

xii

where xii, i = 1, 2, . . . , p are the diagonal elements of X.

The trace provides a scalar summary of a square matrix. Several important properties of the

trace include
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1. For any square matrix X, Tr (X) = Tr (X′).

2. For any two square matrices X1 and X2, Tr (X1 + X2) = Tr (X1) + Tr (X2).

3. For any square matrix X and any scalar constant ϕ, Tr (ϕX) = ϕTr (X).

4. For any three square matrices X1, X2, and X3, Tr (X1X2X3) = Tr (X2X3X1) = Tr (X3X1X2).

Definition 4.6. Determinant of a Matrix. Let X be a p× p matrix. The determinant of X, denoted

as |X| or det (X), is defined as

|X| =
∑

( j1, j2,..., jp)
(−1)ϕ( j1, j2,..., jp)

p∏
i=1

xi ji (4.4)

where the permutation function ϕ (·) denotes a permutation j1, j2, . . . , jp of the integers 1, 2, . . . , p

and the summation is taken over all distinct permutations.

The determinant provides a scalar summary of a square matrix. There are also other ways

of defining the determinant. The most relevant to the present work is the following: Let X−i,− j

denote the (p − 1) × (p − 1) submatrix of X by deleting the ith row and the jth column from X.

The cofactor cfi j of element xi j is the quantity

cfi j = (−1)(i+ j)
∣∣∣X−i,− j

∣∣∣
and

∣∣∣xi j

∣∣∣ = xi j. The matrix X#′ =
(
cfi j

)
is called the cofactor matrix of X, and the matrix X# or

adj (X) is called the adjoint of X. Using this recursive definition of the cofactor, the determinant

can be expressed as

|X| =
p∑

j=1

cfi jxi j (i = 1, 2, . . . , p) . (4.5)

Several important properties of the determinant include

1. For any square matrix X, |X| = |X′|.
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2. For any two square matrices X1 and X2, |X1X2| = |X1| |X2|.

3. For any p × p square matrix X and any scalar constant ζ, |ζX| = ζ p |X|.

4. For any square matrix X, X#X = |X| Ip

4.3.1.2 Matrix Decompositions

Definition 4.7. Eigenvalues and Eigenvectors. Let X be any p × p matrix. Then the scalar λ is

defined to be an eigenvalue of X if there exists a p× 1 vector e , 0 such that Xe = λe. The vector

e is defined to be the eigenvector of X corresponding to λ.

There are several salient properties of eigenvalues and eigenvectors relevant to the present

work, including

1.
∑p

i=1 λi = Tr (X), where λ1, λ2, . . . , λp are the eigenvalues of X.

2.
∏p

i=1 λi = |X|, where λ1, λ2, . . . , λp are the eigenvalues of X.

3. If X1 is a p1 × p2 matrix and X2 is a p2 × p1 matrix, then the nonzero eigenvalues of X1X2

are the same as the nonzero eigenvalues of X2X1.

Definition 4.8. Spectral Decomposition. Let X be a p × p symmetric matrix. The spectral

decomposition of X is defined as X = ELE′, where L = diag
(
λ1, λ2, . . . , λp

)
; λ1 ≥ λ2 ≥ · · · ≥ λp

are the ordered eigenvalues of X; and E is the matrix of normalized eigenvectors corresponding

to the eigenvalues.

Note that the matrix E is orthogonal, so that E′E = Ip. The spectral decomposition is only

defined for square symmetric matrices.

Definition 4.9. Square Root of a Positive Definite Matrix. Let X be a p× p nonnegative definite

matrix. Let X = ELE′ be the spectral decomposition of X, where L = diag
(
λ1, λ2, . . . , λp

)
with

λ1 ≥ λ2 ≥ · · · ≥ λp being the ordered eigenvalues of X. The square root of the matrix X, denoted
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as X1/2, will be defined as

X1/2 = E



√
λ1 0 0 . . . 0

0
√
λ2 0 . . . 0

0 0
√
λ3 . . . 0

...
...

...
. . .

...

0 0 0 . . .
√
λp


E′, (4.6)

so that X1/2X1/2 = X.

Other definitions of the square root of a matrix exist, for which the only requirement of a

square root matrix X∗ is that X∗X∗′ = X or X∗′X∗ = X (Olkin and Rubin, 1964; Rencher, 2002, p.

25). However, with such alternative definitions, the matrix X∗ is not necessarily unique, while the

matrix X1/2 given in Equation (4.6) is unique. The matrix X1/2 is occasionally called the positive

definite square root of a matrix (Muirhead, 1982, p. 588) to distinguish it from the alternative

definitions, but will simply be referred to as the square root throughout this work. Note that X1/2

is symmetric, implying that X1/2X1/2′ = X1/2′X1/2 = X, so X1/2 may often be used as the square

root when alternative definitions have been used. Furthermore, note that X1/2 is positive definite if

X is positive definite. Then the inverse of X1/2, denoted X−1/2, exists and satisfies the relationship

X−1/2X−1/2 = X−1. If X is positive semidefinite, then X1/2 is also positive semidefinite.

4.3.1.3 Kronecker Product

This section reviews some key results concerning the Kronecker product, which has also been

called the direct product. The Kronecker product arises naturally in the development of matrix

derivatives and differentials as described in later sections. A comprehensive review is provided

by Graham (1981), while a discussion of statistical applications is given by Neudecker (1968),

Neudecker (1969), and Koning et al. (1991).

Definition 4.10. Kronecker Product. The Kronecker product of the p1 × p2 matrix X1 and the
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p3 × p4 matrix X2 with elements

X1 =



x111 x121 x131 . . . x1p21

x211 x221 x231 . . . x2p21

x311 x321 x331 . . . x3p21

...
...

...
. . .

...

xp111 xp121 xp131 . . . xp1 p21


and X2 =



x112 x122 x132 . . . x1p42

x212 x222 x232 . . . x2p42

x312 x322 x332 . . . x3p42

...
...

...
. . .

...

xp312 xp322 xp332 . . . xp3 p42


is denoted X1 ⊗ X2 and is defined to be the p1 p3 × p2 p4 matrix

X1 ⊗ X2 =



x111X2 x121X2 x131X2 . . . x1p21X2

x211X2 x221X2 x231X2 . . . x2p21X2

x311X2 x321X2 x331X2 . . . x3p21X2

...
...

...
. . .

...

xp111X2 xp121X2 xp131X2 . . . xp1 p21X2


Note that, unlike the usual matrix product X1X2, the Kronecker product is defined regardless

of the dimension of X1 and X2. The Kronecker product X1 ⊗ X2 will be of different dimension

than X2 ⊗ X1 unless p1 = p3 and p2 = p4. Even in the latter case, X1 ⊗ X2 , X2 ⊗ X1 generally.

Other well-known properties of the Kronecker product (Graham, 1981, section 2.3) include

1. For any scalar constant c and any two matrices X1 and X2, (cX1) ⊗ X2 = X1 ⊗ (cX2) =

c (X1 ⊗ X2).

2. X1 ⊗ (X2 + X3) = (X1 ⊗ X2) + (X1 ⊗ X3) for any three matrices for which the matrix sum is

defined.

3. (X1 ⊗ X2) (X3 ⊗ X4) = X1X3 ⊗ X2X4 for any four matrices for which the matrix product is

defined.
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4.3.1.4 Vec and Vech Operators

This section reviews the vec and vech operators, which transform a matrix into a column vector.

Interest in such a transformation has existed for some time; Neudecker (1969) and Henderson and

Searle (1979) show the usefulness of the vec operator in the computation of matrix derivatives and

Jacobians, as described below. The vec operator also facilitates the expression of a multivariate

model as a corresponding univariate model, as developed by Searle (1978).

Definition 4.11. Vec Operator. For the p1 × p2 matrix X, the vec operator results in the stacking

of the columns of X into a p1 p2 × 1 column vector. Thus, for the matrix

X =



x11 x12 x13 . . . x1p2

x21 x22 x23 . . . x2p2

x31 x32 x33 . . . x3p2

...
...

...
. . .

...

xp11 xp12 xp13 . . . xp1 p2


,

the application of the vec operator to X, denoted as vec (X), is defined as

vec (X) =



x11

x21

...

xp11

x12

x22

...

xp12

...

xp1 p2


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The vec operator is related to the Kronecker product through the identity

vec (X1X2X3) =
(
X′3 ⊗ X1

)
vec X2 (4.7)

for any three matrices X1, X2, and X3 such that the product is defined. Also,

v1 ⊗ v2 = vec
(
v2v′1

)
(4.8)

for any two vectors v1 and v2. The vec operator is also related to the trace function through the

identity

Tr
(
X′1X2

)
= (vec X1)′ vec X2. (4.9)

If X has no specific pattern, then vec (X) contains all of the elements of X arranged in a single

vector. However, if X is a p × p symmetric matrix, it contains only 1
2 p (p + 1) unique elements,

as the remainder may be deduced from symmetry constraints. An operator analogous to the vec

operator is necessary to capture only the unique elements in the column vector.

Definition 4.12. Vech Operator. For the p × p symmetric matrix X, the vech operator results

in the stacking of the elements of each column of X that are on or below the diagonal into a

1
2 p (p + 1) × 1 column vector. Thus, for the matrix

X =



x11 x12 x13 . . . x1p2

x21 x22 x23 . . . x2p2

x31 x32 x33 . . . x3p2

...
...

...
. . .

...

xp11 xp12 xp13 . . . xp1 p2


,

where xi j = x ji for all i , j, the application of the vech operator to X, denoted as vech (X), is
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defined as

vech (X) =



x11

x21

x31

...

xp11

x22

x32

...

xp12

x33

x43

...

xp13

...

xp1 p2


Henderson and Searle (1979) introduce the vech operator and describe the its use in the com-

putation of matrix derivatives and Jacobians of symmetric matrices, in a manner analogous to the

vec operator. Magnus and Neudecker (1980) describe a similar operator, which they denote as

υ (X). In later publications, they adopted the use of the vech operator (Abadir and Magnus, 2005),

which will be the notation used throughout this work.

It should be noted that, in general, vec (X1) = vec (X2) ; X1 = X2, as X1 and X2 may not

be of the same dimension. However, if X1 and X2 are of the same dimension, then vec (X1) =

vec (X2)⇒ X1 = X2. Since the operand of the vech operator is square, it follows that vech (X1) =

vech (X2) ⇒ X1 = X2 for symmetric X1 and X2. However, if X1 and X2 are not symmetric, then

vech (X1) = vech (X2); X1 = X2, as the supradiagonal elements of the two matrices may not be
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the same.

4.3.1.5 Patterned Matrices: Elimination, Duplication, Commutation, and Symmetrizer

Matrices

This section reviews the development and properties of certain patterned matrices that perform

transformations on the vec and vech operators. In addition, each matrix has related properties that

make them useful in the computation of certain Kronecker products. These patterned matrices

are introduced by Magnus and Neudecker (1979, 1980), with additional results given by Magnus

(1988). Henderson and Searle (1979) also developed a similar system of patterned matrices at

approximately the same time, which was extended in Searle (1982, section 12.9). The former

notation will be used throughout this work; correspondence with the latter notation will be given

in this subsection only.

If the p × p matrix X is symmetric, it is obvious that vec (X) contains the same elements as

vech (X), with some of these elements being repeated. A similar observation may be noted for

lower and upper triangular matrices, as the supradiagonal and infradiagonal elements respectively

are 0. Thus, the vec and vech operators are linear transformations of each other in such circum-

stances. Magnus and Neudecker (1980, 1999) define the elimination matrix, denoted by Lp, as

the 1
2 p (p + 1) × p2 patterned matrix that performs the transformation

Lp vec (X) = vech (X) (4.10)

for any p× p matrix X. In other words, the matrix Lp eliminates the supradiagonal elements from

the matrix X. Henderson and Searle (1979) describe a similar matrix, which they denote with H.

Although the two are equivalent for symmetric matrices, the definition by Magnus and Neudecker

(1980) is more versatile as it applies to triangular matrices as well.

The elimination matrix Lp is unique and of full row rank. The central property of Lp as

applied to the vec operator is that L′pLp vec (X) = vec (X) for any lower triangular matrix X.

The corresponding Kronecker property for the elimination matrix is that L′Lp

(
X′1 ⊗ X2

)
L′p =
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X′1 ⊗ X2

)
L′p for any two lower triangular matrices X1 and X2.

Magnus and Neudecker (1980, 1999) define the duplication matrix, denoted by Dp, as the

p2 × 1
2 p (p + 1) matrix that performs the transformation

Dp vech (X) = vec
(
X + X′ − diag (X)

)
. (4.11)

Thus, the duplication matrix duplicates the infradiagonal elements of a matrix to the supradiag-

onal elements, transforming vech (X) into the vec of a symmetric matrix. If X is a symmetric

matrix, then

Dp vech (X) = vec (X) . (4.12)

Henderson and Searle (1979) describe a similar matrix, denoted as G, though this matrix is only

applicable to symmetric matrices. The duplication matrix Dp is unique and of full column rank.

Its central property as applied to the vec operator is DpLp vec (X) = vec (X) for symmetric X,

and the corresponding Kronecker property is that DpLp (X ⊗ X) Dp = (X ⊗ X) Dp for arbitrary

X.

Magnus and Neudecker (1979, 1999) also define the commutation matrix, which they denote

as Kp. For any matrix X, it is readily apparent that vec (X) and vec (X′) contain the same elements,

but in a different order. The commutation matrix is the p2 × p2 matrix that performs the transfor-

mation Kp vec (X) = vec (X′) for every p × p matrix X. Henderson and Searle (1979) define an

analogous matrix, which they call the vec-permutation matrix, which performs the transformation

from vec (X) to vec (X′) for any p1 × p2 matrix X. When p1 = p2, the definitions are equivalent.

The Kronecker property for the commutation matrix Kp is X1 ⊗ X2 = Kp (X2 ⊗ X1) Kp for any

two p × p matrices X1 and X2. Informally, the commutation matrix may be used to commute the

order of the Kronecker product, hence its name.

Finally, Magnus and Neudecker (1980, 1999) define a fourth matrix, which they simply de-

note as Np, by Np = 1
2

(
Ip2 + Kp

)
. Abadir and Magnus (2005, section 11.2) later named this
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matrix the symmetrizer matrix based on its property applied to the vec operator that Np vec (X) =

1
2 vec (X + X′) for any p × p matrix X. Thus, the symmetrizer matrix transforms an arbitrary

square matrix X into a symmetric one, hence its name. The corresponding Kronecker properties

for the symmetrizer matrix are

Np (X1 ⊗ X1) Np = Np (X1 ⊗ X1) = (X1 ⊗ X1) Np

and

Np (X1 ⊗ X2 + X2 ⊗ X1) Np = Np (X1 ⊗ X2 + X2 ⊗ X1) = (X1 ⊗ X2 + X2 ⊗ X1) Np

for any two p × p matrices X1 and X2. The symmetrizer matrix also has a role in computing

certain Kronecker sums, as described below.

The preceding four matrices possess a number of properties useful in the derivation of the

multivariate RVM method. The equivalent of Equation (4.7) for the vech operator involves the

elimination and duplication matrices and is given by

vech
(
X1X2X′1

)
= Lp (X1 ⊗ X1) Dp vech X2 (4.13)

for any two matrices X1 and X2 such that the product is defined. Other properties given by Magnus

and Neudecker (1979, 1980) include:

1. LpL′p = Ip(p+1)/2.

2. Lp Dp = Ip(p+1)/2.

3. DpLpNp = Np.

4. Np = N′p = N2
p; that is, Np is symmetric and idempotent.

5. For any p×p matrix X, LpNp vec (X) = 1
2 vech (X + X′). If X is symmetric, then vech (X) =

LpNp vec (X) = Lp vec (X).
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6. For any p × p matrix X, 2Np

(
Ip ⊗ X

)
Dp = 2Np

(
X ⊗ Ip

)
Dp =

(
Ip ⊗ X + X ⊗ Ip

)
Dp =

DpLp

(
Ip ⊗ X + X ⊗ Ip

)
Dp.

7. For any p × p matrix X, Np (X ⊗ X) = (X ⊗ X) Np = Np (X ⊗ X) Np.

8. For any p × p matrix X, 2Np

(
Ip ⊗ X

)
Np = 2Np

(
X ⊗ Ip

)
Np = Np

(
Ip ⊗ X + X ⊗ Ip

)
=(

Ip ⊗ X + X ⊗ Ip

)
Np = Np

(
Ip ⊗ X + X ⊗ Ip

)
Np.

9. For any p × p nonsingular matrix X,
∣∣∣Lp (X ⊗ X) Dp

∣∣∣−1
=

∣∣∣∣Lp

(
X−1 ⊗ X−1

)
Dp

∣∣∣∣.
10. For any p×p matrix X such that Ip⊗X+X⊗Ip is nonsingular,

∣∣∣∣Lp

(
Ip ⊗ X + X ⊗ Ip

)
Dp

∣∣∣∣−1
=∣∣∣∣Lp

(
Ip ⊗ X + X ⊗ Ip

)−1
Dp

∣∣∣∣.
11. For any p × p matrix X, D′p vec (X) = vech

(
X + X′ − diag (X)

)
.

Some additional properties of the Lp and Dp matrices are given in the following lemmas.

Lemma 4.13. For any p × p matrix X1 and p × p symmetric matrix X2,

(X1 ⊗ X1) vec (X2) = DpLp (X1 ⊗ X1) vec (X2)

and

(X1 ⊗ X1) = DpLp (X1 ⊗ X1) (4.14)

Proof. Applying Equation (4.10) to the symmetric matrix product X1X2X′1 gives

vech
(
X1X2X′1

)
= Lp vec

(
X1X2X′1

)
Applying Equation (4.12) yields

Dp vech
(
X1X2X′1

)
= DpL vec

(
X1X2X′1

)
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or

vec
(
X1X2X′1

)
= DpL vec

(
X1X2X′1

)
Using Equation (4.7), this becomes

(X1 ⊗ X1) vec (X2) = DpL [(X1 ⊗ X1) vec (X2)]

= DpL (X1 ⊗ X1) vec (X2)

Since no restrictions are placed on X2 apart from symmetry, the column vector vec (X2) can be

any arbitrary column vector. The second result immediately follows. �

Lemma 4.14. For any p × p matrix X1 and p × p symmetric matrix X2,

(
X1 ⊗ Ip + Ip ⊗ X1

)
vec (X2) = DpLp

(
X1 ⊗ Ip + Ip ⊗ X1

)
vec (X2)

and

(
X1 ⊗ Ip + Ip ⊗ X1

)
= DpL

(
X1 ⊗ Ip + Ip ⊗ X1

)
(4.15)

Lemma 4.15. For any p × p symmetric matrix X of rank p,
∣∣∣Lp (X ⊗ X) Dp

∣∣∣ = |X|p+1.

Proof. The proof follows Henderson and Searle (1979) and Magnus and Neudecker (1980). Since

X is of full rank, the spectral decomposition X = ELE′ exists. Then

∣∣∣Lp (X ⊗ X) Dp

∣∣∣ =
∣∣∣Lp

(
ELE′ ⊗ ELE′

)
Dp

∣∣∣
=

∣∣∣Lp (E ⊗ E) (L ⊗ L)
(
E′ ⊗ E′

)
Dp

∣∣∣
by Property (3) of the Kronecker product. Note that, since Lp and Dp are rectangular matrices,



www.manaraa.com

92

the determinant cannot be factored into separate determinants. However, using Equation (4.14),

∣∣∣Lp (E ⊗ E) (L ⊗ L)
(
E′ ⊗ E′

)
Dp

∣∣∣ =
∣∣∣Lp (E ⊗ E) DpLp (L ⊗ L) DpLp

(
E′ ⊗ E′

)
Dp

∣∣∣
=

∣∣∣Lp (E ⊗ E) Dp

∣∣∣ ∣∣∣Lp (L ⊗ L) Dp

∣∣∣ ∣∣∣Lp
(
E′ ⊗ E′

)
Dp

∣∣∣ ,
which can be factored into three separate determinants as all of the matrices involved are square

and of the same size. Then

∣∣∣Lp (E ⊗ E) Dp

∣∣∣ ∣∣∣Lp (L ⊗ L) Dp

∣∣∣ ∣∣∣Lp
(
E′ ⊗ E′

)
Dp

∣∣∣
=

∣∣∣Lp
(
E′ ⊗ E′

)
Dp

∣∣∣ ∣∣∣Lp (E ⊗ E) Dp

∣∣∣ ∣∣∣Lp (L ⊗ L) Dp

∣∣∣
=

∣∣∣Lp
(
E′ ⊗ E′

)
DpLp (E ⊗ E) Dp

∣∣∣ ∣∣∣Lp (L ⊗ L) Dp

∣∣∣
=

∣∣∣Lp
(
E′ ⊗ E′

)
(E ⊗ E) Dp

∣∣∣ ∣∣∣Lp (L ⊗ L) Dp

∣∣∣
using Equation (4.14) again. Using Property (3) of the Kronecker product,

∣∣∣Lp
(
E′ ⊗ E′

)
(E ⊗ E) Dp

∣∣∣ ∣∣∣Lp (L ⊗ L) Dp

∣∣∣ =
∣∣∣Lp

(
E′E ⊗ E′E

)
Dp

∣∣∣ ∣∣∣Lp (L ⊗ L) Dp

∣∣∣
=

∣∣∣∣Lp

(
Ip ⊗ Ip

)
Dp

∣∣∣∣ ∣∣∣Lp (L ⊗ L) Dp

∣∣∣
=

∣∣∣∣Lp

(
Ip2

)
Dp

∣∣∣∣ ∣∣∣Lp (L ⊗ L) Dp

∣∣∣
=

∣∣∣Lp Dp

∣∣∣ ∣∣∣Lp (L ⊗ L) Dp

∣∣∣ . (4.16)

Using Property (2) of the elimination and duplication matrices,

∣∣∣Lp Dp

∣∣∣ ∣∣∣Lp (L ⊗ L) Dp

∣∣∣ =
∣∣∣Ip(p+1)/2

∣∣∣ ∣∣∣Lp (L ⊗ L) Dp

∣∣∣
=

∣∣∣Lp (L ⊗ L) Dp

∣∣∣ (4.17)

Let λ1 ≥ λ2 ≥ · · · ≥ λp be the eigenvalues of L, which are the same as its diagonal elements,

and let e1, e2, . . . , ep be the corresponding eigenvectors. Henderson and Searle (1979) simply note

that L ⊗ L is a diagonal matrix with elements λiλ j, i, j = 1, 2, . . . , p, along the diagonal. Then
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Lp (L ⊗ L) Dp is equal to Lp times Dp with the [p (i − 1) + j]th row of Dp multiplied by λiλ j,

which gives the formula for the determinant. However, the determinant may be evaluated by

finding the eigenvalues of Lp (L ⊗ L) Dp. Note that the 1
2 p (p + 1) eigenvalues of Lp (L ⊗ L) Dp

are the same as the 1
2 p (p + 1) nonzero eigenvalues of DpLp (L ⊗ L). Then

DpLp (L ⊗ L)
(
ei ⊗ e j + e j ⊗ ei

)
= DpLp

(
Lei ⊗ Le j + Le j ⊗ Lei

)
= DpLp

(
λiei ⊗ λ je j + λ je j ⊗ λiei

)
using the definition of eigenvalues. Using Property (1) of Kronecker products,

DpLp

(
λiei ⊗ λ je j + λ je j ⊗ λiei

)
= DpLp

(
λiλ j

(
ei ⊗ e j

)
+ λ jλi

(
e j ⊗ ei

))
= λiλ j DpLp

(
ei ⊗ e j + e j ⊗ ei

)
Applying Equation (4.8) yields

λiλ j DpLp

(
ei ⊗ e j + e j ⊗ ei

)
= λiλ j DpLp vec

(
e je′i + eie′j

)
The results of Equation (4.14) then imply

λiλ j DpLp vec
(
e je′i + eie′j

)
= λiλ j vec

(
e je′i + eie′j

)
and a second application of Equation (4.8) gives

λiλ j vec
(
e je′i + eie′j

)
= λiλ j

(
ei ⊗ e j + e j ⊗ ei

)
.

Then by definition λiλ j, i = 1, 2, . . . , p, j = i, i + 1, . . . , p, are the 1
2 p (p + 1) nonzero eigenval-

ues of DpLp (L ⊗ L), which are also the eigenvalues of Lp (L ⊗ L) Dp. Using Property (2) of
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eigenvalues,

∣∣∣Lp (L ⊗ L) Dp

∣∣∣ =

p∏
i≤ j

λiλ j

=

p∏
i=1

λ
p+1
i

=

 p∏
i=1

λi

p+1

= |X|p+1

�

Lemma 4.16. For any p × p nonsingular symmetric matrix X,
∣∣∣∣Lp

(
Ip ⊗ X + X ⊗ Ip

)
Dp

∣∣∣∣ =∏p
i≤ j

(
λi + λ j

)
= 2p |X|

∏p
i< j

(
λi + λ j

)
, where λ1 ≥ λ2 ≥ · · · ≥ λp are the eigenvalues of X.

Proof. The proof is sketched in Magnus and Neudecker (1980) and is similar to Lemma 4.15.

The determinant is evaluated by finding the 1
2 p (p + 1) eigenvalues of Lp

(
Ip ⊗ X + X ⊗ Ip

)
Dp,

which are the same as the 1
2 p (p + 1) nonzero eigenvalues of DpLp

(
Ip ⊗ X + X ⊗ Ip

)
. Let λ1 ≥

λ2 ≥ · · · ≥ λp be the eigenvalues of X and let e1, e2, . . . , ep be the corresponding eigenvectors.

Then

DpLp

(
Ip ⊗ X + X ⊗ Ip

) (
ei ⊗ e j + e j ⊗ ei

)
= DpLp

[(
Ip ⊗ X

) (
ei ⊗ e j

)
+

(
Ip ⊗ X

) (
e j ⊗ ei

)
+

(
X ⊗ Ip

) (
ei ⊗ e j

)
+

(
X ⊗ Ip

) (
e j ⊗ ei

)]
= DpLp

(
Ipei ⊗ Xe j + Ipe j ⊗ Xei + Xei ⊗ Ipe j + Xe j ⊗ Ipei

)
= DpLp

(
ei ⊗ λ je j + e j ⊗ λiei + λiei ⊗ e j + λ je j ⊗ ei

)
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using the definition of eigenvalues and Properties (2) and (3) of Kronecker products. Using

Property (1) of Kronecker products,

DpLp

(
ei ⊗ λ je j + e j ⊗ λiei + λiei ⊗ e j + λ je j ⊗ ei

)
= DpLp

[
λ j

(
ei ⊗ e j

)
+ λi

(
e j ⊗ ei

)
+ λi

(
ei ⊗ e j

)
+ λ j

(
e j ⊗ ei

)]
= DpLp

[(
λi + λ j

) (
ei ⊗ e j

)
+ (λi + λi)

(
e j ⊗ ei

)]
=

(
λi + λ j

)
DpLp

(
ei ⊗ e j + e j ⊗ ei

)
Applying Equation (4.8) yields

(
λi + λ j

)
DpLp

(
ei ⊗ e j + e j ⊗ ei

)
=

(
λi + λ j

)
DpLp vec

(
e je′i + eie′j

)
The results of Equation (4.14) then imply

(
λi + λ j

)
DpLp vec

(
e je′i + eie′j

)
=

(
λi + λ j

)
vec

(
e je′i + eie′j

)
and a second application of Equation (4.8) gives

(
λi + λ j

)
vec

(
e je′i + eie′j

)
=

(
λi + λ j

) (
ei ⊗ e j + e j ⊗ ei

)
.

Then by definition λi + λ j, i = 1, 2, . . . , p, j = i, i + 1, . . . , p, are the nonzero eigenvalues of

DpLp

(
Ip ⊗ X + X ⊗ Ip

)
, which are also the eigenvalues of Lp

(
Ip ⊗ X + X ⊗ Ip

)
Dp. Using Prop-
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erty (2) of eigenvalues,

∣∣∣∣Lp

(
Ip ⊗ X + X ⊗ Ip

)
Dp

∣∣∣∣ =

p∏
i≤ j

(
λi + λ j

)
=

p∏
i=1

(λi + λi) ·
p∏

i< j

(
λi + λ j

)
=

p∏
i=1

2λi ·

p∏
i< j

(
λi + λ j

)
= 2p

p∏
i=1

λi ·

p∏
i< j

(
λi + λ j

)
= 2p |X|

p∏
i< j

(
λi + λ j

)
�

4.3.1.6 Jacobian Determinant

Another useful concept in the study of multivariate statistics is that of the Jacobian determinant

which will be used extensively in the development of the multivariate RVM method.

Definition 4.17. Jacobian Determinant. Let the matrix Y = F (X) be a p1 × p2 matrix of differ-

entiable functions of the elements of the p3 × p4 random matrix X. The function F (·) is called a

transformation from X to Y, denoted X → Y. If the transformation X → Y is one-to-one, then the

Jacobian determinant (or simply Jacobian) will be denoted JX→Y and is defined as the absolute

value of the determinant

∣∣∣∣∣∣∂xi j

∂ykl

∣∣∣∣∣∣ ,
where X = {xi j}, i = 1, 2, . . . , p3, j = 1, 2, . . . , p4; and Y = {ykl}, k = 1, 2, . . . , p1, l = 1, 2, . . . , p2,

are the elements of X and Y respectively.

In statistics, Jacobians arise naturally in obtaining the distribution for a transformation of

random variables. Again consider the transformation X → Y, which is given by the function
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Y = F (X). Since the transformation is one-to-one, there also exists an inverse function F−1 such

that X = F−1 (Y). Let the probability density function of X be given by the scalar function fX (X);

then the probability density of fY (Y) is given by

fY (Y) = fY (F (X)) = fX

(
F−1 (Y)

)
JX→Y

As defined above, the computation of the Jacobian determinant involves the computation of

p1 p2 p3 p4 partial derivatives. This potentially daunting task may be simplified by the use of

matrix derivatives and matrix differentials (Magnus and Neudecker, 1999, chapter 9), which are

discussed next.

4.3.1.7 Matrix Derivative and Differential

For scalar functions of scalar variables, the (first) derivative of a function y = y (x) with respect

to the variable x, denoted
dy
dx

, is well defined as

dy
dx

= lim
h→0

y (x + h) − y (x)
h

at the point x. An equivalent expression to Equation (4.18) is

y (x + h) = y (x) + h
dy
dx

+ r (x) (4.18)

where r (·) is the remainder function satisfying the equation

lim
h→0

r (h)
h

= 0.

The (first) differential of the scalar function y, denoted as dy, is then defined as

dy (x; h) = h
dy
dx

(4.19)
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Equations (4.18) and (4.19) are easily generalized to the definition of a matrix derivative. The

partial derivatives
∂y
∂x1

,
∂y
∂x2

, . . . ,
∂y
∂xp

are also well defined when y = y
(
x1, x2, . . . , xp

)
is a function

of p variables. Similarly, if y is a scalar function of a vector x = [x1x2 . . . xp]′, then the definition

of
∂y
∂x′

, the derivative of y with respect to x, is the 1 × p vector

∂y
∂x′

=

[
∂y
∂x1

∂y
∂x2

. . .
∂y
∂xp

]
.

This definition is generally accepted, although some sources, such as Rencher (2000, p. 51),

define the derivative as a column rather than a row vector. If y is a scalar function of the p2 × p1

matrix X =
(
xi j

)
, then

∂y
∂x′

=



∂y
∂x11

∂y
∂x12

. . .
∂y

∂x1,p1

∂y
∂x21

∂y
∂x22

. . .
∂y

∂x2,p1

∂y
∂x31

∂y
∂x32

. . .
∂y

∂x3,p1

...
...

. . .
...

∂y
∂xp2,1

∂y
∂xp2,2

. . .
∂y

∂xp2,p1



(4.20)

If y = y (x) is a p2 × 1 vector-valued function of the p1 × 1 vector x, then let the individual

elements of x be denoted as x = {xi}, i = 1, 2, . . . , p1, and the individual elements of y be denoted

y = {y j}, j = 1, 2, . . . , p2. The derivative (or Jacobian matrix) of y with respect to x is defined as
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the p2 × p1 matrix

∂y
∂x′

=

[
∂y j

∂xi

]

=



∂y1

∂x1

∂y1

∂x2
. . .

∂y2

∂xp1

∂y2

∂x1

∂y2

∂x2
. . .

∂y2

∂xp1

...
...

. . .
...

∂yp2

∂x1

∂yp2

∂x2
. . .

∂yp2

∂xp1


For a matrix derivative, let X be a p1 × p2 matrix, and let Y = F (X) be a p3 × p4 matrix of

differentiable functions of the elements of X. These individual elements will be denoted X = {xi j},

i = 1, 2, . . . , p1, j = 1, 2, . . . , p2, for X and Y = {ykl}, k = 1, 2, . . . , p3, l = 1, 2, . . . , p4, for Y. Then

the matrix derivative
∂Y
∂X

denotes the p1 p2 p3 p4 partial derivatives
∂ykl

∂xi j
. However, although there

is agreement that the matrix derivative should include all of these partial derivatives, there are

several different notations that have been used that correspond to a different ordering of these

partial derivatives. Magnus and Neudecker (1985) argue strongly for the following definition,

based on several considerations, including the existence of a meaningful chain rule.

Definition 4.18. Matrix Derivative. Let X be a p1 × p2 matrix, and let Y = F (X) be a p3 × p4

matrix of differentiable functions of the elements of X. The matrix derivative (or Jacobian matrix)

of Y at X is the p1 p2 × p3 p4 matrix dF (X) given by

dF (X) =
∂ vec (F (X))
∂ (vec (X))′

(4.21)

This reduces the computation of a matrix derivative to the computation of a vector derivative,

for which a well-established definition exists. Furthermore, the Jacobian determinant may be

calculated as the determinant of the Jacobian matrix. For symmetric matrices, a similar notation
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exists:

dF (X) =
∂ vech (F (X))
∂ (vech (X))

Magnus and Neudecker (1980, 1999) originally used the operator υ (·) instead of vech (·), but

later works adopted the vech (·) notation (Abadir and Magnus, 2005). The latter will be used

throughout this work as it seems to be in more common usage and also avoids any ambiguity

with the variable v, but otherwise the notation of Magnus and Neudecker (1999) will be used.

Magnus and Neudecker (1999) also describe the concept of the matrix differential, which

is similar to the differential of a scalar function of scalar variables in Equation (4.19). Let

F : E → Rp3×p4 be a matrix function defined on the set E ⊆ Rp1×p2 , and let the matrix X be

an interior point of E. The scalar distance measure in Equation (4.18) is replaced by the usual

matrix norm, which is denoted by ‖ · ‖ and defined as ‖ X ‖ =
√

Tr (X′X) for the matrix X.

The interval y (x + h) − y (x) in Equation (4.18) is replaced by B (X, r) ⊂ E, where B (·, ·) is the

ball (or neighborhood) of E with center X and radius rd, consisting of those points in E where

B (X, rd) = (X : X ∈ Rp1×p2 , ‖ X − C ‖< rd). Let U be a point in Rp1×p2 with ‖ U ‖< rd, so that

X + U ∈ B (X, rd). Then the matrix differential dF (X; U) is a number which approximates the

value of the function F (X + U) by the affine function F (X) + dF (X; U) U. In other words, the

function of the sum X + U can be approximated by the value of the function at X plus another

value that is proportional to U. The formal definition of the matrix differential is as follows.

Definition 4.19. Matrix Differential. If there exists a real p1 p3 × p2 p4 matrix A, depending on

X but not on U, such that

vec (F (X + U)) = vec (F (X)) + A (X) vec (U) + vec (Rc (U))

for all U ∈ Rp1×p2 with ‖ U ‖< r and the remainder function Rc satisfying

lim
U→0

Rc (U)
‖ U ‖

= 0,
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then the function F is said to be differentiable at X. Furthermore, the p3 × p4 matrix dF (X; U)

given by

vec (dF (X; U)) = A (X) vec (U)

is called the (first) differential of F at X with increment U and the p1 p3 × p2 p4 matrix A (X) is

called the (first) derivative of F at X.

Magnus and Neudecker (1999, pp. 148 and 172) also provide a list of several properties for

the matrix differential; most of these follow the equivalent expressions for scalar functions of

scalar variables:

1. dC = 0

2. dX = Ip1 p2

3. d (G + H) = dG + dH

4. d (GH) = (dG) H + G (dH) (Product Rule)

5. d (G (H)) = dG (H) dH (Chain Rule)

6. d (G ⊗ H) = dG ⊗ dH

7. dG′ = (dG)′

8. d vec (G) = vec (dG)

9. d Tr (G) = Tr (dG)

where G (·) and H (·) are matrix functions of the p1 × p2 matrix X, and C is a matrix constant.

The value of matrix differentials in the present work is in the computation of Jacobian matrices

and Jacobian determinants. This is due to the following theorem by Magnus and Neudecker

(1999).
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Theorem 4.20 (First Identification Theorem). Let F : S → Rp3×p4 be a matrix function on a set

E ⊆ Rp1×p2 , and differentiable at an interior point X ∈ E. Then

vec (dF (X; U)) = A (X) vec (U)

for all U ∈ Rp3×p4 if and only if

JF→X (X) = A (X) ,

or, equivalently,

JX→F (X) = A−1 (X) .

The First Identification Theorem relates the Jacobian matrix, from which the Jacobian deter-

minant is calculated, to the matrix differential. This greatly simplifies the computation of the Ja-

cobian determinant compared to the computation using the partial derivatives of the individual el-

ements. Given a matrix function Y = F (X), one must compute the differential dF (X), then apply

the vec (or vech) operator to obtain an equation of the form d (vec (F (X))) = A (X) d (vec (X)).

It can then be concluded that JX→Y = A−1 (X).

The set of lemmas in the next subsection illustrate the application of the First Identification

Theorem by the computation of several Jacobian determinants that will be needed in the derivation

of the multivariate RVM method. The following properties of the Jacobian determinant and the

matrix differential, outlined by Olkin and Sampson (1972), will be used in these and other proofs:

1. If Y1 = F (X) and Y2 = G (Y1) = G (F (X)) are both matrix functions, then JX→Y2 =

JX→Y1 JY1→Y2 .

2. If Y = F (X) is a matrix function and JX→Y , 0, then JX→Y JY→X = 1. Alternatively,

JX→Y = 1/JY→X.

3. If Y1 = F (X1) and Y2 = G (X2) are matrix functions whose arguments X1 and X2 do not
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depend on each other, then JX1,X2→Y1,Y2 = JX1→Y1 JX2→Y2 .

4. If Y = F (X) is a smooth transformation of X to Y, then JX→Y = JdX→dY.

Property (1) allows a complex Jacobian to be broken into a series of simpler steps that are easier

to compute. Property (2) allows a Jacobian to be found from the Jacobian of the inverse trans-

formation, which may be easier to compute. Finally, Property (4) means that the Jacobian of a

nonlinear transformation may still be computed if the transformation is linear in the differentials.

4.3.2 Results for Derivatives and Jacobian Matrices

A number of specific matrix derivatives and Jacobian matrices are needed in the development of

the multivariate RVM. These are stated in the following lemmas.

4.3.2.1 Scalar Functions of a Matrix

Lemma 4.21. Let X be a p × p matrix, and let y be the scalar function defined by y = |X|. Then,

at the points where X is nonsingular,

dy = |X|Tr
(
X−1dX

)
(4.22)

and

∂y
∂ [vec (X)]′

= |X|
[
vec

(
X−1′

)]′
.

Proof. The proof is outlined in Magnus and Neudecker (1999). In this case, the element-by-

element definition of the matrix derivative in Equation (4.20), rather than the definition of the

derivative based on matrices in Equation (4.21), must be applied. From the alternative definition

of the determinant in terms of cofactors in Equation (4.5),

|X| =
p∑

j=1

cfi jxi j (i = 1, 2, . . . , p) .
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From the definition of the cofactor, it is apparent that cfi j does not depend on xi j for any given j.

Thus

∂y
∂xi j

=
∂

∂xi j

p∑
j=1

cfi jxi j

= cfi j

for all i, so that

dy =

p∑
i=1

p∑
j=1

cfi jdxi j

= Tr
(
X#dX

)
(4.23)

From Property (4) of determinants, X#X = |X| Ip ⇒ X# = |X| X−1. Substituting into Equa-

tion (4.23) and applying Property (3) of the trace gives

dy = |X|Tr
(
X−1dX

)
.

Using the results of Equation (4.9), this becomes

dy = |X|
[
vec

(
X−1′

)]′
vec (dX) .

By the First Identification Theorem, d |X| = |X|Tr
(
X−1

)
dX and

∂ |X|
∂ [vec (X)]′

= |X|
[
vec

(
X−1′

)]′
.

�

Lemma 4.22. Let X be a p × p matrix, and let y be the scalar function defined by y = log (|X|).

Then, at the points where |X| > 0,

dy = Tr
(
X−1dX

)
(4.24)
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and

∂y
∂ [vec (X)]′

=
[
vec

(
X−1′

)]′
.

Proof. The proof is outlined in Abadir and Magnus (2005, Section 13.2). Using the Chain Rule

(Property (5) of the matrix differential) and the results of Lemma 4.21,

dy =
1
|X|

d |X|

=
1
|X|
|X|Tr

(
X−1dX

)
= Tr

(
X−1dX

)
=

[
vec

(
X−1′

)]′
vec (dX)

By the First Identification Theorem, d log (|X|) = Tr
(
X−1

)
dX and

∂ log (|X|)′

∂ [vec (X)]′
=

[
vec

(
X−1′

)]′
.

�

Lemma 4.23. Let X be a p × p matrix and let C be p × p matrix. Let y be the scalar function

defined by y = Tr (CX′X). Then

dy = Tr
[(

C + C′
)

X′dX
]

and

∂y
∂ [vec (X)]′

=
(
vec

[
X

(
C + C′

)])′ .
Proof. The proof is similar to that of Abadir and Magnus (2005, Section 13.2). Using Proper-
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ties (4), (7), and (9) of the matrix differential,

dy = d Tr
(
CX′X

)
= Tr

[
d
(
CX′X

)]
= Tr

[
C

(
dX′

)
X + CX′dX

]
= Tr

[
C (dX)′ X + CX′dX

]
.

Using Properties (1), (2), and (4) of the trace,

Tr
[
C (dX)′ X + CX′dX

]
= Tr

(
C (dX)′ X

)
+ Tr

(
CX′dX

)
= Tr

[
X′ (dX) C′

]
+ Tr

(
CX′dX

)
= Tr

(
C′X′dX

)
+ Tr

(
CX′dX

)
= Tr

[(
C + C′

)
X′dX

]
= Tr

[(
C + C′

)′ X′dX
]

= Tr
([

X
(
C + C′

)]′ dX
)

Using Equation (4.9), this becomes

Tr
([

X
(
C + C′

)]′ dX
)

=
(
vec

[
X

(
C + C′

)])′ vec (dX) .

Then d Tr (CX) = Tr [(C + C′) X′dX] and
∂Tr (CX′X)
∂ [vec (X)]′

= (vec [X (C + C′)])′ by the First Identi-

fication Theorem. �

When the matrix argument X is symmetric, this imposes restrictions on the possible values

that X may take, which in turn changes the form of the derivatives. The next two proofs address

the derivative of the trace and the determinant when X is symmetric. Although similar results have

been presented before (Harville, 1997, sections 15.6 and 15.8), these proofs using the duplication

matrix are apparently new.
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Lemma 4.24. Let X be a p × p symmetric matrix and let C be p × p matrix. Let y be the scalar

function defined by y = Tr (XC) = Tr (CX). Then

dy = Tr (CdX)

and

∂y
∂ (vech [X)]′

=
(
vech

[
C + C′ − diag (C)

])′ .
Proof. Using Property (9) of the matrix differential,

dy = d Tr (CX)

= Tr [d (CX)]

= Tr (CdX) .

To find the derivative, note that

dy = d Tr (XC)

= d Tr
(
X′C

)
= Tr

[
d
(
X′C

)]
= Tr

[(
dX′

)
C
]

= Tr
[
(dX)′ C

]
= vec (dX)′ vec (C)
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From Equation (4.12), this is equivalent to

dy = vec (dX)′ vec (C)

=
[
Dp vech (dX)

]′
vec (C)

= [vech (dX)]′ D′p vec (C)

=
[
D′p vec (C)

]′
vech (dX)

=
(
vech

[
C + C′ − diag (C)

])′ vech (dX)

where the next to the last equation follows because, since dy is a scalar, it is equal to its transpose.

By the First Identification Theorem, d Tr (CX) = Tr (CdX) and
∂Tr (CX)
∂ [vech (X)]′

=
[
D′p vec (C)

]′
=(

vech
[
C + C′ − diag (C)

])′. �

Lemma 4.25. Let X be a p × p symmetric matrix, and let y be the scalar function defined by

y = log (|X|). Then, at the points where |X| > 0,

dy = Tr
(
X−1dX

)
and

∂y
∂ [vech (X)]′

=
(
vech

[
2X−1 − diag

(
X−1

)])′
.

Proof. Noting that dy is a scalar and equal to its transpose and using Lemma 4.22,

dy = Tr
(
X−1dX

)
=

[
vec

(
X−1′

)]′
vec (dX)

=
[
vec

(
X−1

)]′
vec (dX)

= [vec (dX)]′ vec
(
X−1

)
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From Equation (4.12), this is equivalent to

dy = [vec (dX)]′ vec
(
X−1

)
=

[
Dp vech (dX)

]′
vec

(
X−1

)
= [vech (dX)]′ D′p vec

(
X−1

)
=

[
D′p vec

(
X−1

)]′
vech (dX)

=
(
vech

[
X−1 + X−1′ − diag

(
X−1

)])′
vech (dX)

=
(
vech

[
2X−1 − diag

(
X−1

)])′
vech (dX) .

So d log (|X|) = Tr
(
X−1

)
dX and

∂ log (|X|)
∂ [vech (X)]′

=
[
D′p vec

(
X−1

)]′
=

(
vech

[
2X−1 − diag

(
X−1

)])′
by the First Identification Theorem. �

4.3.2.2 Matrix Functions of a Matrix

Lemma 4.26. Let X, C1, and C2 be p × p matrices, and let Y be the p × p matrix defined by the

transformation Y = C1XC2. Then the Jacobian of the transformation is

JX→Y = |C1|
p
|C2|

p

Proof. This proof is outlined in Magnus and Neudecker (1980). Let

Y = C1XC2

and take differentials of both sides to obtain

dY = C1 (dX) C2.
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Applying the vec operator gives

vec (dY) = vec (C1 (dX) C2) ,

which is equivalent to

d vec (Y) =
(
C′2 ⊗ C1

)
d vec (X) .

Thus

JX→Y =
∣∣∣C′2 ⊗ C1

∣∣∣
=

∣∣∣C′2∣∣∣p |C1|
p

= |C1|
p
|C2|

p

�

Lemma 4.27. Let X be a p × p symmetric matrix. Let Y be the p × p symmetric matrix defined

by the transformation Y = X−1. Then the Jacobian of the transformation is

JX→Y = |X|−(p+1)

Proof. This proof is similar to that of Henderson and Searle (1979) and Magnus and Neudecker

(1980). In this case, it is easier to find the Jacobian JY→X and apply Property (2) of Jacobians. Let

Y = X−1

or, equivalently,

Y = X−1XX−1
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Taking differentials yields

dY = X−1 (dX) X−1

and applying the vech operator gives

vech (dY) = vech
(
X−1 (dX) X−1

)
.

This is equivalent to

d vech (Y) = −Lp

(
X−1 ⊗ X−1

)
Dpd vech (X) .

Thus, using the First Identification Theorem,

JY→X =
∣∣∣∣Lp

(
X−1 ⊗ X−1

)
Dp

∣∣∣∣ .
Applying Lemma 4.15 gives

∣∣∣∣Lp

(
X−1 ⊗ X−1

)
Dp

∣∣∣∣ =
∣∣∣X−1

∣∣∣p+1

= |X|−(p+1) . (4.25)

Then JX→Y = 1/JY→X = 1/ |X|−(p+1) = |X|p+1. �

Lemma 4.28. Let X be a p × p symmetric matrix, and let C be a p × p matrix of constants. Let

Y be the p × p symmetric matrix defined by the transformation Y = CXC′. Then the Jacobian of

the transformation is

JX→Y = |C|−(p+1)

Proof. This proof follows ones given in Magnus and Neudecker (1980, p. 436) and Henderson
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and Searle (1979, p. 74). In this case, it is easier to find the Jacobian JY→X and apply Property (2)

of Jacobians. Let

Y = CXC′

Taking differentials gives

dY = C (dX) C′

Applying the vech operator to both sides gives

vech (dY) = vech
(
C (dX) C′

)
or

d (vech (Y)) = Lp (C ⊗ C) Dp d (vech (X))

using Equation (4.13). Thus, by the First Identification Theorem,

JY→X =
∣∣∣Lp (C ⊗ C) Dp

∣∣∣ ,
which, by Lemma 4.15, is equal to |C|p+1. Thus JX→Y = 1/JY→X = 1/ |C|p+1 = |C|−(p+1). �

Lemma 4.29. Let X be a p× p symmetric matrix, and let Y be the p× p symmetric matrix defined

by the transformation Y = X1/2. Then the Jacobian of the transformation is

JX→Y =

p∏
i≤ j

(
λi + λ j

)

where λ1 ≥ λ2 ≥ · · · ≥ λp are the ordered eigenvalues of Y = X1/2.

Proof. A proof of a similar result is given in Magnus and Neudecker (1980, p. 437), while an
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alternative derivation is given in Olkin and Sampson (1972, p. 269). Let

Y = X1/2 ⇔ X = Y2 = YY.

Taking differentials of both sides using the product rule gives

dX = Y (dY) + (dY) Y.

Applying the vech operator gives

vech (dX) = vech (Y (dY) + (dY) Y)

= vech (Y (dY)) + vech ((dY) Y)

(4.26)

and using Equation (4.13) yields

vech (dX) = Lp

(
Ip ⊗ Y

)
Dp vech (dY) + Lp

(
Y ⊗ Ip

)
Dp vech (dY)

or

d vech (X) = Lp

(
Ip ⊗ Y + Y ⊗ Ip

)
Dp d vech (Y) . (4.27)

By the First Identification Theorem, JX→Y =
∣∣∣∣Lp

(
Ip ⊗ Y + Y ⊗ Ip

)
Dp

∣∣∣∣ =
∏p

i≤ j

(
λi + λ j

)
, where

λ1 ≥ λ2 ≥ · · · ≥ λp are the ordered eigenvalues of Y = X1/2, by Lemma 4.16. �

Lemma 4.30. Let X and K be p× p symmetric matrices, and let Y be the p× p symmetric matrix

defined by the transformation Y = XCX. Then the Jacobian of the transformation is

JX→Y =
1∏p

i≤ j

(
ηi + η j

)
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where η1 ≥ η2 ≥ · · · ≥ ηp are the ordered eigenvalues of XC.

Proof. Similar proofs are given in Magnus and Neudecker (1980, p. 437), with Olkin and Samp-

son (1972, p. 269) providing another approach. In this case, it is easier to find the Jacobian JY→X

and apply Property (2) of Jacobians. Let

Y = XCX

Taking differentials of both sides using the product rule gives

dY = XC (dX) + (dX) CX.

Applying the vech operator gives

vech (dY) = vech (XC (dX) + (dX) CX)

= vech (XC (dX)) + vech ((dX) CX)

(4.28)

and using Equation (4.13) yields

vech (dY) = Lp

(
Ip ⊗ XC

)
Dp vech (dX) + Lp

(
(CX)′ ⊗ Ip

)
Dp vech (dX)

= Lp

(
Ip ⊗ XC

)
Dp vech (dX) + Lp

(
X′C′ ⊗ Ip

)
Dp vech (dX)

= Lp

(
Ip ⊗ XC

)
Dp vech (dX) + Lp

(
XC ⊗ Ip

)
Dp vech (dX)

since C and X are symmetric. This simplifies to

d (vech (Y)) = Lp

(
Ip ⊗ XC + XC ⊗ Ip

)
Dp d (vech (X)) (4.29)

By the First Identification Theorem, JY→X =
∣∣∣∣Lp

(
Ip ⊗ XC + XC ⊗ Ip

)
Dp

∣∣∣∣ =
∏p

i≤ j

(
ηi + η j

)
,

where η1 ≥ η2 ≥ · · · ≥ ηp are the ordered eigenvalues of XC, by Lemma 4.16. Thus JX→Y =
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1/JY→X = 1/
∏p

i≤ j

(
ηi + η j

)
. �

Lemma 4.31. Let X be a p × p lower triangular matrix. Let C1 and C2 be p × p symmetric

matrices, and let Y be the p × p symmetric matrix defined by Y = X′C1X + XC2X′. Then the

Jacobian of the transformation is

JX→Y = 2p
∣∣∣∣Lp

(
Ip ⊗ C1X + C2X′ ⊗ Ip

)
Dp

∣∣∣∣ .
One specific case is the Cholesky decomposition Y = XX′, with the Jacobian

JX→Y = 2n
∣∣∣∣Lp

(
X ⊗ Ip

)
Dp

∣∣∣∣
= 2p

p∏
i=1

xp−i+1
ii ,

where xii are the diagonal elements of X. A second specific case is the transformation Y = X′CX,

with the Jacobian

JX→Y = 2n
∣∣∣∣Lp

(
Ip ⊗ CX

)
Dp

∣∣∣∣
= 2p

p∏
i=1

(
xi

ii

∣∣∣C[i]

∣∣∣) ,
where C[i] denotes the i×i upper left submatrix of C and C[i] denotes the i×i lower right submatrix

of C.

Lemma 4.32. Let X be a p1× p1 singular matrix of rank k. Let Q be a p2× p2 matrix of full rank,

and let Y be the p2 × p2 matrix of rank k given by Y = QXQ′. Let the spectral decomposition

of X be denoted as X = E1L1E1, so that E′1E1 = Ip and L1 = diag (λ1, λ2, . . . , λk) are the

ordered nonzero eigenvalues of X. Similarly, let the spectral decomposition of Y be denoted as

Y = E2L2E′2, so that E′2E2 = Ik and L2 = diag (κ1 ≥ κ2 ≥ · · · ≥ κk) are the ordered nonzero

eigenvalues of Y. Then the Jacobian of the transformation Y = F (X) is

JX→Y = |L1|
(k−p2−1)/2

|L2|
(p2+1−k)/2

|Q|−k
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Proof. This is a more specific statement of Theorem 1 of Dı́az-Garcı́a and Gutiérrez Jáimez

(1997) and its accompanying proof. Note that the original article contains a typographical error,

as the exponent for the first determinant should be k − p2 − 1 rather than p2 + 1 − k. �

Lemma 4.33. Let X be a p × p positive semidefinite matrix of rank k, and let Y be the positive

semidefinite p × p matrix of rank k given by Y = X1/2. Let the spectral decomposition of X be

denoted by X = ELE′, so that E′E = Ip and L = diag (λ1, λ2, . . . , λk) are the ordered nonzero

eigenvalues of X. Then the Jacobian of the transformation from X to Y is given by

JX→Y =

k∏
i≤ j

(
λi + λ j

)
= 2k |L|p−k+1

k∏
i< j

(
λi + λ j

)
. (4.30)

Proof. This result is proved as Theorem 8 of Dı́az-Garcı́a and González-Farı́as (2005). �

4.3.3 Probability Distributions

The development of the multivariate RVM requires several results from multivariate distribution

theory. This theory extends the well-known univariate statistical distributions to multivariate data,

in which multiple data points are collected on each experimental unit. The multivariate distribu-

tions allow for modeling more complicated covariance structures among the outcome variables,

as data points collected from a single experimental unit are often presumed to be correlated. The

next three sections review the key distributions in multivariate statistical analysis. Of necessity,

only certain aspects of distribution theory germane to the multivariate RVM will be presented;

a comprehensive treatment of the subject may be found in Gupta and Nagar (2000). Proofs for

many of these results are available in the literature and will be appropriately referenced. How-

ever, proofs will also be restated as needed, which will provide additional details not contained in

extant works and illustrate techniques that will be used in the development of new distributions

in the present work.
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4.3.3.1 Wishart and Related Distributions

The Wishart distribution (Wishart, 1928) is a multivariate generalization of the univariate χ2 dis-

tribution, which is in turn a special case of the univariate gamma distribution given by Equa-

tion (3.2). The discovery and characterization of the Wishart distribution was a key event in the

development of multivariate analysis. A large body of literature now exists that examines aspects

of the Wishart, and a number of related distributions have been described. The formal definition

of the Wishart distribution is given by the following.

Definition 4.34 (Wishart Distribution). The p × p positive definite matrix M has a Wishart

distribution with n ≥ p degrees of freedom and positive definite covariance matrix Σ, denoted as

M ∼ Wp (Σ,m), if the probability density of M is

f (M) =
|M|(n−p−1)/2

2np/2 |Σ|n/2 Γp

(
n
2

) exp
(
−

1
2

Tr
[
Σ−1 M

])
(4.31)

where Γp (·) is the multivariate gamma function

Γp (x) = πp(p−1)/4
p∏

i=1

Γ
(
x − 1

2 (i − 1)
)
, x > 1

2 (p − 1)

=

∫
X>0

e−Tr X |X|x−(m+1)/2 dX

with X > 0 denoting the space of all positive definite matrices.

The Wishart is the sampling distribution of the sample covariance matrix for multivariate data

that are normally distributed. Specifically, if x j ∼ Np (0,Σ) , j = 1, 2, . . . , n represent n ≥ p

observations from a multivariate normal population with mean 0 and covariance matrix Σ, then

M =

n∑
j=1

x jx′j

has a p-variate Wishart distribution with n degrees of freedom.

When p = 1, the Wishart distribution reduces to W1

(
σ2, n

)
≡ σ2 Gamma

(
n
2 ,

1
2

)
≡ σ2χ2

n,



www.manaraa.com

118

where Σ
1×1

= σ2. In general, the diagonal elements mii of a Wishart-distributed matrix M are

proportional to a χ2 distribution. Letting σ2
ii denote the ith diagonal element of Σ, this relationship

can be expressed as mii ∼ σ
2
ii χ

2
n. In Bayesian analysis, a Wishart prior is the usual choice for the

covariance matrix of the multivariate normal distribution, analogous to the gamma prior for the

variance in the univariate normal.

The matrix M in the above definition is positive definite with probability 1 if and only if n ≥ p

(Dykstra, 1970; Eaton and Perlman, 1973). Thus, if n < p, so that the matrix M is singular, the

distribution in Equation (4.31) does not exist. However, a related distribution can be defined for

such singular matrices, which is given next.

Definition 4.35 (Pseudo-Wishart Distribution). The p × p positive semidefinite matrix M of

rank n < p has a pseudo-Wishart distribution with n degrees of freedom and covariance matrix

Σ, denoted as M ∼ Wn
p (Σ, n), if the probability density of M is

f (M) =
π(−pn+p2)

2pn/2 |Σ|n/2 Γn

(
n
2

) |L|(n−p−1)/2 exp
(
−

1
2

Tr
[
Σ−1 M

])
(4.32)

where L = diag (λ1, λ2, . . . , λn), with λ1 ≥ λ2 ≥ · · · ≥ λn being the ordered nonzero eigenvalues of

M.

The nomenclature for this distribution is not standardized. Srivastava and Khatri (1979, p.72)

and Dı́az-Garcı́a et al. (1997) suggest the term singular Wishart distribution be used when the

population covariance matrix Σ is singular, and that the term pseudo-Wishart distribution be used

when the sample matrix M is singular, which will be the convention used in the present work.

However, this practice has not been widely adopted, and the distribution in Equation (4.32) is fre-

quently labeled the singular Wishart distribution in the literature. The pseudo-Wishart distribution

is an analogue of the nonsingular Wishart distribution that describes the behavior of multivariate

normal data when the number of observations n is less than the number of observed variables p.

Specifically, if x j ∼ Np (0,Σ) , j = 1, 2, . . . , n represent n < p observations from a multivariate
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normal population with mean 0 and covariance matrix Σ, then

M =

n∑
j=1

x jx′j

has a p-variate pseudo-Wishart distribution with n degrees of freedom. Interest in the pseudo-

Wishart and related multivariate singular distributions has grown recently due to the need to

analyze high-dimensional data, such as occurs with microarrays (Srivastava, 2007). The distribu-

tional theory and applications of the pseudo-Wishart distribution are described in detail by Uhlig

(1994), Dı́az-Garcı́a et al. (1997), and Srivastava (2003).

Comparing Equations (4.31) and (4.32), it is readily apparent that the two distributions are

equivalent for n = p. However, this equivalence does not hold in general, as shown in the follow-

ing lemma, which appears to be new to the literature.

Lemma 4.36. If n ≥ p + 1, then the relationship between the nonsingular Wishart distribution in

Equation (4.31) and the singular Wishart distribution in Equation (4.32) is given by

Wn
p (Σ, n) =

π(n−p)2/2

Γn−p

(
n−p

2

)Wp (Σ, n) (4.33)

Proof. If n ≥ p, Equation (4.32) becomes

π(−np+n2)/2

2np/2Γn

(
n
2

)
|Σ|n/2

|L|(n−p−1)/2 exp
(
−

1
2

Tr
[
Σ−1 M

])
, (4.34)

adopting the convention that L = diag
(
l1, l2, . . . , lmin(n,p)

)
is the diagonal matrix of the ordered

nonzero eigenvalues of M whether M is singular or nonsingular. Comparing the Wishart distri-

bution in Equation (4.31) to Equation (4.34), it can be seen that Equation (4.33) is true if

π(−np+n2)/2

Γn

(
n
2

) =
π(n−p)2/2

Γn−p

(
n−p

2

) · 1

Γp

(
n
2

)
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or

π(−np+n2)/2Γp

(n
2

)
=

π(n−p)2/2

Γn−p

(
n−p

2

) · Γn

(n
2

)
(4.35)

Proof of the equality in Equation (4.35) proceeds by induction. Note that, by the definition of the

multivariate gamma function,

Γn

(n
2

)
= πn(n−1)/4

n∏
j=1

Γ

(
n + 1 − j

2

)

Furthermore, if n > p,

Γn

(n
2

)
= πn(n−1)/4

n∏
j=1

Γ

(
n + 1 − j

2

)

= πp(p−1)/4 ·

p∏
j=1

Γ

(
n + 1 − j

2

)
π(n−p)(n−p−1)/4 ·

n∏
j=p+1

Γ

(
n + 1 − j

2

)
· πp(n−p)/2

With a change of index on the second product term, this can be rewritten as

Γn

(n
2

)
= πp(p−1)/4 ·

p∏
j=1

Γ

(
n + 1 − j

2

)
π(n−p)(n−p−1)/4 ·

n−p∏
j=1

Γ

(
n − p + 1 − j

2

)
· πp(n−p)/2

so that, using the definition of the multivariate gamma function,

Γn

(n
2

)
= Γp

(n
2

)
Γn−p

(n − p
2

)
πp(n−p)/2 (4.36)

For the base case of n = p + 1, Equation (4.35) becomes

π(−(p+1)p+(p+1)2)/2Γp

(
p + 1

2

)
=

π((p+1)−p)2/2

Γ(p+1)−p

(
(p+1)−p

2

) · Γp+1

(
p + 1

2

)
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or

π(p+1)/2Γp

(
p + 1

2

)
=

π1/2

Γ1

(
1
2

) · Γp+1

(
p + 1

2

)
.

Since Γ1

(
1
2

)
= Γ

(
1
2

)
= π1/2, this can be written as

π(p+1)/2Γp

(
p + 1

2

)
= Γp+1

(
p + 1

2

)
. (4.37)

Applying Equation (4.36) to the term on the right-hand side yields

Γp+1

(
p + 1

2

)
= Γp

(
p + 1

2

)
Γ1

(
1
2

)
πp/2

so that Equation (4.37) becomes

π(p+1)/2Γp

(
p + 1

2

)
= Γp

(
p + 1

2

)
Γ1

(
1
2

)
πp/2

= Γp

(
p + 1

2

)
π1/2πp/2.

Thus Equation (4.35) holds for the base case. It must also be shown that, if equality holds for an

arbitrary n > p + 1, then equality holds for n + 1. For the latter, Equation (4.35) becomes

π(−(n+1)p+(n+1)2)/2Γp

(
n + 1

2

)
=

π((n+1)−p)2/2

Γ(n+1)−p

(
(n+1)−p

2

) · Γn+1

(
n + 1

2

)

This simplifies to

π(−np−p+n2+2n+1)/2Γp

(
n + 1

2

)
=
π(n2+2n+1+p2−2p−2np)/2

Γn+1−p

(
n+1−p

2

) · Γn+1

(
n + 1

2

)
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or

Γp

(
n + 1

2

)
=

π(p2−p−np)/2

Γn+1−p

(
n+1−p

2

) · Γn+1

(
n + 1

2

)
.

Substituting Equation (4.36) on the right-hand side gives gives

Γp

(
n + 1

2

)
=

π(p2−p−np)/2

Γn+1−p

(
n+1−p

2

) · Γp

(
n + 1

2

)
Γn+1−p

(
n + 1 − p

2

)
πp(n+1−p)/2

which becomes

1 = π(p2−p−np)/2 · π(np+p−p2)/2

Thus Equation (4.33) holds by induction. �

Based on Equation (4.33), the formulae for the nonsingular Wishart and the pseudo-Wishart

distributions are equivalent only when n = p or n = p + 1. As equivalence of the two does

not occur in general, determining whether the sample matrix is singular will be essential prior to

applying the multivariate RVM method. Separate computational routines will be required for the

nonsingular and pseudo-Wishart distributions so that appropriate results may be obtained.

A final distribution related to the Wishart describes the distribution of the inverse of a Wishart-

distributed random variable.

Definition 4.37 (Inverted Wishart Distribution). The p × p positive definite matrix M has an

inverted Wishart distribution with n ≥ p degrees of freedom and positive definite covariance

matrix Σ, denoted as M ∼ IWp (Σ,m), if the probability density of M is

f (M) =
|Σ|(n−p−1)/2

2(n−p−1)p/2 |M|n/2 Γp

(
n−p−1

2

) exp
(
−

1
2

Tr
[
M−1Σ

])
(4.38)

The inverted Wishart is frequently used in Bayesian analysis as the conjugate prior for the

covariance matrix of the multivariate normal distribution. The Wishart and inverted Wishart dis-
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tributions are closely related: if M ∼ IWp (Σ, n), then M−1 ∼ Wp

(
Σ−1, n − p − 1

)
.

4.3.3.2 Multivariate Beta and Related Distributions

A second family of distributions of great importance in multivariate analysis is the multivariate

beta, which extends the univariate beta family of distributions. Specifically, the univariate random

variable x is said to have a beta type I distribution with parameters a and b if the density function

f (x) is given by

f (x) =
Γ
(

a+b
2

)
Γ
(

a
2

)
Γ
(

b
2

) xa/2−1 (1 − x)b/2−1 , 0 < x < 1. (4.39)

The univariate random variable x is said to have a beta type II distribution with parameters a and

b if the density function f (x) is given by

f (x) =
Γ
(

a+b
2

)
Γ
(

a
2

)
Γ
(

b
2

) xa/2−1 (1 + x)−(a+b)/2 . (4.40)

The beta type II distribution is related to the univariate F distribution with parameters a and b,

which has the density function

f (x) =
Γ
(

a+b
2

)
Γ
(

a
2

)
Γ
(

b
2

) (a
b

)a/2
xa/2−1

(
1 +

a
b

x
)−(a+b)/2

. (4.41)

Also, note that if x has a beta type I distribution, then x
1−x has a beta type II distribution, which

has led some authors to call the latter the inverted beta distribution.

In univariate analysis, if x1 ∼ χ
2
n1

and x2 ∼ χ
2
n2

are independent random variables, then
x1

x1 + x2

has a beta type I distribution. Similarly,
x1

x2
has a beta type II distribution, and

x1/n1

x2/n2
has an Fn1,n2

distribution. The corresponding multivariate generalizations involve the ratios of determinants of

Wishart distributed random variables. Several different approaches for generalizing the univariate

case have been developed by different authors, which are summarized in the following definitions.

The nomenclature for these distributions is also not standardized, with some authors describing
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them as multivariate and others calling them matrix variate. The former will be used throughout

the present work.

Definition 4.38 (Multivariate Beta Distribution, Type I). The p× p positive definite, symmetric

random matrix M has a multivariate Beta type I distribution with n1 and n2 degrees of freedom,

denoted as M ∼ MβI (p, n1, n2), if the probability density of M is

Γp ((n1 + n2) /2)
Γp (n1/2) Γp (n2/2)

|M|(n1−p−1)/2
∣∣∣Ip − M

∣∣∣(n2−p−1)/2
, 0 < M < Ip.

The multivariate beta type I distribution was originally described by Hsu (1939), with exten-

sions by Khatri (1959, 1970) and Mitra (1970). It is a generalization of the univariate beta type I

distribution. Let M1 ∼ Wp

(
n1, Ip

)
and M2 ∼ Wp

(
n2, Ip

)
, and let (M1 + M2)∗ be any factorization

of M1 + M2 such that (M1 + M2)∗ (M1 + M2)∗′ = M1 + M2. Then (M1 + M2)∗ M1 (M1 + M2)∗′ ∼

MβI (p, n1, n2). This distribution is described here for completeness but will not be used in the

derivation of the multivariate RVM.

Definition 4.39 (Multivariate Beta Distribution, Type II). The p×p positive definite, symmetric

random matrix M has a multivariate Beta type II distribution with n1 and n2 degrees of freedom,

denoted as M ∼ MβII (p, n1, n2), if the probability density of M is

Γp ((n1 + n2) /2)
Γp (n1/2) Γp (n2/2)

|M|(n1−p−1)/2
∣∣∣Ip + M

∣∣∣−(n1+n2)/2

The multivariate beta type II distribution was derived by Olkin and Rubin (1964). It is a

generalization of the univariate beta type II distribution. Let the matrices M1 ∼ Wp

(
Ip, n1

)
and

M2 ∼ Wp

(
Ip, n2

)
be independent; then M−1/2

1 M2 M−1/2′
1 ∼ MβII (p, n1, n2). When p = 1, the

multivariate beta type II distribution is equivalent to the univariate beta type II distribution. Also

note that some authors, such as Srivastava and Khatri (1979, section 3.6), list the degrees of

freedom for the multivariate type II distribution in reverse order compared to the above definition.

The preceding definition is occasionally called the standardized multivariate beta type II dis-

tribution, as the Wishart matrices from which it is derived are in standard form with covariance
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matrix Ip. The generalized multivariate beta type II distribution is an extension of the standard-

ized distribution, given in the following definition.

Definition 4.40 (Generalized Multivariate Beta Distribution, Type II). The p× p positive defi-

nite, symmetric random matrix M has a generalized multivariate Beta type II distribution with n1

and n2 degrees of freedom and parameter matrices Ω and Ξ, denoted M ∼ GβII (p, n1, n2;Ω,Ξ),

if the probability density of M is

Γp ((n1 + n2) /2)
Γp (n1/2) Γp (n2/2)

|Ω +Ψ|n2/2 |M − Ξ|(n1−p−1)/2
|Ω + M|−(n1+n2)/2

The generalized multivariate beta type II distribution was derived by Tan (1969). It readily fol-

lows from the standardized distribution: if M ∼ MβII (p, n1, n2), then (Ω + Ξ)1/2 M (Ω + Ξ)1/2 +

Ξ ∼ GβII (p, n1, n2;Ω,Ξ). The matrix Ξ serves as a location parameter, while the matrix Ω is a

scale parameter.

The multivariate beta type II distribution is occasionally referred to as the multivariate F

distribution, similar to the relationship between the univariate beta type II and univariate F dis-

tributions. However, an alternative formulation of the multivariate F distribution, which more

closely resembles the definition of the univariate F distribution, has also been proposed.

Definition 4.41 (Multivariate F Distribution). The p × p positive definite, symmetric random

matrix M has a multivariate F-distribution with n1 ≥ p and n2 ≥ p degrees of freedom and scale

matrix Ω, denoted as M ∼ Fp (n1, n2,Ω), if the probability density of M is

Γp ((n1 + n2) /2)
Γp (n1/2) Γp (n2/2)

|Ω|−n1/2 |M|(n1−p−1)/2
∣∣∣Ip +Ω−1 M

∣∣∣−(n1+n2)/2

This distribution is derived and extensively discussed in Muirhead (1982, section 8.2.5) and

Muirhead and Verathaworn (1985), although the distribution was not specifically labeled until

later publications (Konno, 1991). When p = 1, F1 (n1, n2,Ω) ≡ Fn1,n2 with Ω =
n2

n1
. More gen-

erally, if the matrix M1 ∼ Wp (Ω, n1) and M2 ∼ Wp

(
Ip, n2

)
, then M1/2

1 M−1
2 M1/2

1 ∼ Fp (n1, n2,Ω).
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Since

Γp ((n1 + n2) /2)
Γp (n1/2) Γp (n2/2)

|Ω|n2/2 |M|(n1−p−1)/2
|Ω + M|−(n1+n2)/2

=
Γp ((n1 + n2) /2)

Γp (n1/2) Γp (n2/2)
|Ω|n2/2 |M|(n1−p−1)/2

|Ω + M|−(n1+n2)/2
·
∣∣∣Ω−1

∣∣∣−(n1+n2)/2

· |Ω|−(n1+n2)/2

=
Γp ((n1 + n2) /2)

Γp (n1/2) Γp (n2/2)
|Ω|−n1/2 |M|(n1−p−1)/2

∣∣∣Ip +Ω−1 M
∣∣∣−(n1+n2)/2

,

it follows that Fp (n1, n2,Ω) ≡ GβII (p, n1, n2;Ω, 0).

Olkin and Rubin (1964) also derived other distributions related to the multivariate beta type II

by examining transformations of the product of Wishart densities. Although not as widely used

as the multivariate beta type II, these distributions are of importance to the development of the

multivariate RVM and are presented in the following theorems.

Theorem 4.42. Let M1 ∼ Wp

(
Ip, n1

)
and M2 ∼ Wp

(
Ip, n2

)
be independently distributed. Let M∗

1

be a lower triangular factorization of M1 such that M∗
1 M∗′

1 = M1. Let Y =
(
M∗

1

)−1
M2

(
M∗′

1

)−1
.

Then Y and M1 + M2 are independent and the distribution of Y is

Γp ((n1 + n2) /2)
Γp (n1/2) Γp (n2/2)

|Y|(n1−p−1)/2
∣∣∣Ip + Y

∣∣∣−(n1+n2−p−1)/2 1∏p
i=1

∣∣∣∣(Ip + Y
)[i]∣∣∣∣

where
(
Ip + Y

)[i]
denotes the i × i upper left submatrix of

(
Ip + Y

)
.

Theorem 4.43. Let M1 ∼ Wp

(
Ip, n1

)
and M2 ∼ Wp

(
Ip, n2

)
be independently distributed. Let

Y = M−1/2
1 M2 M−1/2

1 . Then Y and M = M1 + M2 are not independent and their joint distribution

is given by

1
2(n1+n2)p/2Γp (n1/2) Γp (n2/2)

|Y|(n1−p−1)/2
∣∣∣Ip + Y

∣∣∣−(n1+n2−p−1)/2
|M|(n1+n2−p−1)/2

· exp
(
−

1
2

Tr M
) p∏

i≤ j

(
θi + θ j

)(
ηi + η j

) , (4.42)
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where θ1 ≥ θ2 ≥ . . . ≥ θp are the ordered eigenvalues of M1/2
1 and η1 ≥ η2 ≥ . . . ≥ ηp are the

ordered eigenvalues of
(
Ip + Y

)1/2
M1/2

1

(
Ip + Y

)1/2
.

Similar to the pseudo-Wishart distribution, a singular multivariate beta type II distribution

may be defined for random matrices of less than full rank.

Definition 4.44 (Singular Multivariate Beta Distribution, Type II). The p× p positive semidef-

inite, symmetric random matrix M of rank n1 has a singular multivariate Beta type II distribution

with n1 < p and n2 ≥ p degrees of freedom, denoted as M ∼ Mβn1
II (p, n1, n2), if the probability

density of M is

πn1(n1−p)/2Γp ((n1 + n2) /2)
Γn1 (n1/2) Γp (n2/2)

|L|(n1−p−1)/2
∣∣∣Ip + M

∣∣∣−(n1+n2)/2

where L = diag
(
λ1, λ2, . . . , λn1

)
with λ1 ≥ λ2 ≥ · · · ≥ λn1 being the n1 nonzero eigenvalues of M.

The derivation of the singular multivariate Beta type II distribution is given by Srivastava

(2003). It extends the multivariate beta type II distribution to cases where the number of ob-

servations is less than the number of variables. If the singular matrix M1 ∼ Wp

(
Ip, n1

)
and the

nonsingular matrix M2 ∼ Wp

(
Ip, n2

)
, then M−1/2

2 M1 M−1/2′
2 ∼ Mβn1

II (p, n1, n2).

As with the nonsingular multivariate beta type II distribution, the singular multivariate beta

type II distribution may be generalized so that the matrix parameters of the Wishart distribution

is not the identity matrix. Although this generalization is straightforward, the following two

definitions appear to be new to the literature.

Definition 4.45 (Generalized Singular Multivariate Beta Distribution, Type II). The p × p

positive semidefinite, symmetric random matrix M of rank n1 has a generalized singular multi-

variate Beta type II distribution with n1 < p and n2 ≥ p degrees of freedom and scale parameter

Ω, denoted as M ∼ Gβn1
II (p, n1, n2; Ω), if the probability density of M is

πn1(n1−p)/2Γp ((n1 + n2) /2)
Γn1 (n1/2) Γp (n2/2)

|Ω|n2/2 |L|(n1−p−1)/2
|Ω + M|−(n1+n2)/2
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where L = diag
(
λ1, λ2, . . . , λn1

)
with λ1 ≥ λ2 ≥ · · · ≥ λn1 being the n1 nonzero eigenvalues of M.

The generalized singular multivariate distribution can be obtained using Definition 4.44 and

Lemma 4.32. Let M1 ∼ Mβn1
II (p, n1, n2) and M = Ω1/2 M1Ω

1/2. The density of M1 is given by

f (M1) =
πn1(n1−p)/2Γp ((n1 + n2) /2)

Γn1 (n1/2) Γp (n2/2)
|L1|

(n1−p−1)/2
∣∣∣Ip + M1

∣∣∣−(n1+n2)/2
,

where L1 is the diagonal matrix of eigenvalues of M1. Since Ω is full rank, M1 = Ω−1/2 MΩ−1/2;

and by Lemma 4.32, the Jacobian of the transformation is |L1|
p+1−n1 |L|n1−p−1

|Ω|−n1/2. With the

change in variables, the density of M is given by

f (M) =
πn1(n1−p)/2Γp ((n1 + n2) /2)

Γn1 (n1/2) Γp (n2/2)
|L1|

(n1−p−1)/2
∣∣∣Ip +Ω−1/2 MΩ−1/2

∣∣∣−(n1+n2)/2

· |L1|
p+1−n1 |L|n1−p−1

|Ω|−n1/2

=
πn1(n1−p)/2Γp ((n1 + n2) /2)

Γn1 (n1/2) Γp (n2/2)
|Ω|−n1/2 |L|(n1−p−1)/2

∣∣∣Ip +Ω−1/2 MΩ−1/2
∣∣∣−(n1+n2)/2

(4.43)

=
πn1(n1−p)/2Γp ((n1 + n2) /2)

Γn1 (n1/2) Γp (n2/2)
|Ω|−n1/2 |L|(n1−p−1)/2

∣∣∣Ip +Ω−1/2 MΩ−1/2
∣∣∣−(n1+n2)/2

· |Ω|(n1+n2)/2
|Ω|−(n1+n2)/2

=
πn1(n1−p)/2Γp ((n1 + n2) /2)

Γn1 (n1/2) Γp (n2/2)
|Ω|−n1/2 |Ω|(n1+n2)/2

|L|(n1−p−1)/2

·
∣∣∣Ω1/2

∣∣∣−(n1+n2)/2 ∣∣∣Ip +Ω−1/2 MΩ−1/2
∣∣∣−(n1+n2)/2 ∣∣∣Ω1/2

∣∣∣−(n1+n2)/2

=
πn1(n1−p)/2Γp ((n1 + n2) /2)

Γn1 (n1/2) Γp (n2/2)
|Ω|n2/2 |L|(n1−p−1)/2

|Ω + M|−(n1+n2)/2 ,

which establishes the definition.

The singular multivariate F distribution may be derived from the generalized singular multi-

variate beta type II distribution in a manner analogous to their nonsingular counterparts.

Definition 4.46 (Singular Multivariate F Distribution). The p × p positive semidefinite, sym-

metric random matrix M of rank n1 has a singular multivariate F distribution with n1 < p and

n2 ≥ p degrees of freedom and scale matrix Ω, denoted as M ∼ Fn1
p (n1, n2,Ω), if the probability
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density of M is

πn1(n1−p)/2Γp ((n1 + n2) /2)
Γn1 (n1/2) Γp (n2/2)

|Ω|−n1/2 |L|(n1−p−1)/2
∣∣∣Ip +Ω−1 M

∣∣∣−(n1+n2)/2

where L = diag
(
λ1, λ2, . . . , λn1

)
with λ1 ≥ λ2 ≥ · · · ≥ λn1 being the n1 nonzero eigenvalues of M.

This definition can be obtained directly from Equation (4.43):

f (M) =
πn1(n1−p)/2Γp ((n1 + n2) /2)

Γn1 (n1/2) Γp (n2/2)
|Ω|−n1/2 |L|(n1−p−1)/2

∣∣∣Ip +Ω−1/2 MΩ−1/2
∣∣∣−(n1+n2)/2

=
πn1(n1−p)/2Γp ((n1 + n2) /2)

Γn1 (n1/2) Γp (n2/2)
|Ω|−n1/2 |L|(n1−p−1)/2

∣∣∣Ip +Ω−1/2 MΩ−1/2
∣∣∣−(n1+n2)/2

·
∣∣∣Ω−1/2

∣∣∣−(n1+n2)/2 ∣∣∣Ω1/2
∣∣∣−(n1+n2)/2

=
πn1(n1−p)/2Γp ((n1 + n2) /2)

Γn1 (n1/2) Γp (n2/2)
|Ω|−n1/2 |L|(n1−p−1)/2

∣∣∣Ω−1/2
∣∣∣−(n1+n2)/2

·
∣∣∣Ip +Ω−1/2 MΩ−1/2

∣∣∣−(n1+n2)/2 ∣∣∣Ω1/2
∣∣∣−(n1+n2)/2

=
πn1(n1−p)/2Γp ((n1 + n2) /2)

Γn1 (n1/2) Γp (−n1/2)
|L|(n1−p−1)/2

∣∣∣Ip +Ω−1 M
∣∣∣−(n1+n2)/2

,

which establishes the definition.

Definition 4.47 (Wilks’ Lambda Distribution). Let M1 ∼ Wp

(
Ip,m

)
be a random matrix and

M2 ∼ Wp

(
Ip, n

)
be a random matrix independent of M1. Then the test statistic

Λ =
|M1|

|M1 + M2|
=

∣∣∣Ip + M−1
1 M2

∣∣∣−1

has a Wilks’ lambda distribution with m and n degrees of freedom, denoted as Λ (p,m, n).

The Wilks’ lambda statistic is a multivariate generalization of the F statistic for conducting

likelihood ratio tests about the values of the random vectors from which the covariance matrices

M1 and M2 are derived. However, Wilks’ lambda rejects for small values of the test statistic,

while the F test rejects for large values.
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4.3.4 Development of the Multivariate Random Variance Model

In generalizing the univariate RVM to a multivariate one, a general linear mixed model will be

used, with the univariate variables replaced by multivariate counterparts. For the usual multivari-

ate model, the intensities Y will be modeled as

Y
n×p

= X
n×k

′ β
k×p

+ ε
n×p

(4.44)

where Y now represents a matrix of probe-level intensities within a probeset for each chip rather

than a vector of probeset-level intensities for each probeset on a chip. X remains the design matrix

for the experiment, β the coefficients representing the effects of probes, and ε random error. It is

assumed that ε has a p-variate normal distribution with mean 0 and covariance matrix Σ, which

will be denoted as ε ∼ Np (0,Σ). As in the univariate case, the usual multivariate model has the

assumption that Σ is a constant term. In the multivariate RVM, the covariance matrix is allowed

to vary for each probeset, and the set of covariance matrices are modeled as realizations from

an underlying distribution. The Wishart distribution was chosen as the prior distribution for the

inverse of the covariance matrices, analogous to the gamma distribution in the univariate RVM,

so that

Σ−1 ∼ Wp

(
Σ−1; B, a

)
≡

∣∣∣Σ−1
∣∣∣(a−p−1)/2

2ap/2 |B|a/2 Γp

(
a
2

) exp
(
−

1
2

Tr
[
B−1Σ−1

])
. (4.45)

The scalar hyperparameter a, which represents the degrees of freedom, and the matrix hyperpa-

rameter B, which represents the covariance of the Wishart distribution, are estimated from the

sample data. The assumption in Equation (4.45) leads to a modification of the sums of squares

and the test statistics similar to that of the univariate RVM. With the model in Equation (4.44),

the hypotheses of interest are H0 : β ∈ ω versus H1 : β ∈ Rp×p, where ω is a linear subspace of

Rp×p. In the usual multivariate linear models, when there are no distributional assumptions on the
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covariance matrix Σ, the maximum likelihood estimate for β under H1 is

β̂ =
(
X′X

)−1 X′Y, (4.46)

where X is of rank k. Under H0 the MLE is

̂̂
β =

(
X′ωXω

)−1 X′ωY (4.47)

where Xω, a matrix of rank r, is again the design matrix X projected into the subspace ω. The

multivariate RVM test is given by the following theorem, which is an extension of Theorem 3.1.

Theorem 4.48. Under multivariate RVM, the likelihood ratio test statistic for testing H0 : β ∈ ω

against H1 : β ∈ Rp×p will be of the form,

Λ̃(n+a−p−1)/2 =

∣∣∣∣ŜS + B−1
∣∣∣∣∣∣∣∣∣̂̂SS + B−1

∣∣∣∣∣ > δ
(n+a−p−1)/2 (4.48)

where ̂̂SS and ŜS are the sums of squares and crossproducts under H0 and H1, respectively,

defined as

ŜS =
(
Y − X′β̂

)′ (
Y − X′β̂

)
, (4.49)

̂̂SS =

(
Y − X′ω

̂̂
β
)′ (

Y − X′ω
̂̂
β
)
, (4.50)

and ŜS + B−1 is the sums of squares and crossproducts under RVM.

Proof. Let y1, y2, . . . , yn and x1, x2, . . . , xn denote vectors corresponding to the rows of Y and X,

respectively, so that Y =
[
y1, y2, . . . , yn

]′ and X = [x1, x2, . . . , xn]′. Then y j ∼ Np

(
β′x j,Σ

)
for
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j = 1, 2, . . . , n and are independent of each other. The density function of Y is

L (Y|β,Σ) =

n∏
j=1

1
(2π)p/2

|Σ|1/2
exp

(
−

1
2

(
y j − β

′x j

)′
Σ−1

(
y j − β

′x j

))

=
1

(2π)np/2
|Σ|n/2

exp

−1
2

n∑
j=1

[(
y j − β

′x j

)′
Σ−1

(
y j − β

′x j

)] . (4.51)

Since a scalar is equal to its trace,
(
y j − β

′x j

)′
Σ−1

(
y j − β

′x j

)
= Tr

[(
y j − β

′x j

)′
Σ−1

(
y j − β

′x j

)]
.

Using Property (4) of the trace, it follows that

n∑
j=1

[(
y j − β

′x j

)′
Σ−1

(
y j − β

′x j

)]
=

n∑
j=1

Tr
[(

y j − β
′x j

)′
Σ−1

(
y j − β

′x j

)]
=

n∑
j=1

Tr
[
Σ−1

(
y j − β

′x j

) (
y j − β

′x j

)′]
= Tr

[
Σ−1 (Y − Xβ)′ (Y − Xβ)

]
since

Y − Xβ =
[
y1 − β

′x1, y2 − β
′x2, . . . , yn − β

′xn
]′ .

Thus the density function may be rewritten as

L (Y|β,Σ) =
1

(2π)np/2
|Σ|n/2

exp
(
−

1
2

Tr
[
Σ−1 (Y − Xβ)′ (Y − Xβ)

])
. (4.52)

Let Z = Σ−1. Include the distributional assumptions as presented in Equation (4.45) and the

density in Equation (4.52) becomes

L (Y|β, Z) =
|Z|n/2

(2π)np/2 exp
(
−

1
2

Tr
[
Z (Y − Xβ)′ (Y − Xβ)

])
·Wp (Z; B, a)
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This is equivalent to

L (Y|β, Z) =
|Z|n/2

(2π)np/2 exp
(
−

1
2

Tr
[
Z (Y − Xβ)′ (Y − Xβ)

])
·
|Z|(a−p−1)/2

2ap/2 |B|a/2 Γp

(
a
2

) exp
(
−

1
2

Tr B−1Z
)

(4.53)

after explicitly stating the Wishart distribution. This simplifies to

L (Y|β, Z) =
|Z|(n+a−p−1)/2

2(n+a)p/2πnp/2 |B|a/2 Γp

(
a
2

) exp
(
−

1
2

Tr
[
Z (Y − Xβ)′ (Y − Xβ)

]
−

1
2

Tr B−1Z
)

or

L (Y|β, Z) = c1 |Z|(n+a−p−1)/2 exp
(
−

1
2

Tr
[
Z

(
(Y − Xβ)′ (Y − Xβ) + B−1

)])

where the term

c1 =
1

2(n+a)p/2πnp/2 |B|a/2 Γp

(
a
2

)
is a scaling constant. The joint likelihood of β and Z is

L (β, Z|Y) = c1 |Z|(n+a−p−1)/2 exp
(
−

1
2

Tr
[
Z

(
(Y − Xβ)′ (Y − Xβ) + B−1

)])

with log likelihood

log L (β, Z|Y) = log (c1) +
n + a − p − 1

2
log |Z| −

1
2

Tr
(
Z

[
(Y − Xβ)′ (Y − Xβ) + B−1

])
= log (c1) +

n + a − p − 1
2

log |Z| −
1
2

Tr
[
Z (Y − Xβ)′ (Y − Xβ)

]
−

1
2

Tr
(
ZB−1

)
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Using Lemma 4.24 and noting that Z is symmetric, the differential with respect to β is

d log L (β, Z|Y) = d
(
−

1
2

Tr
[
Z (Y − Xβ)′ (Y − Xβ)

])
= −

1
2

Tr
[
dZ (Y − Xβ)′ (Y − Xβ)

]
= −

1
2

Tr
[(

Z + Z′
)

(Y − Xβ)′ d (Y − Xβ)
]

= −
1
2

Tr
[(

Z + Z′
)

(Y − Xβ)′ (−X) dβ
]

=
1
2

Tr
[
2Z (Y − Xβ)′ Xdβ

]
= Tr

[
Z (Y − Xβ)′ Xdβ

]
= Tr

[(
X′ (Y − Xβ) Z′

)′ dβ]
= Tr

[(
X′ (Y − Xβ) Z

)′ dβ]
Using Equation (4.9), this becomes

Tr
[(

X′ (Y − Xβ) Z
)′ dβ] =

(
vec

[
X′ (Y − Xβ) Z

])′ vec (dβ)

so that, by the First Identification Theorem,

∂

∂ (vec (β))′
log L (β, Z|Y) =

(
vec

[
X′ (Y − Xβ) Z

])′ (4.54)

To obtain the maximum likelihood estimate ̂̂
β under H0, setting Equation (4.54) to 0 and noting

Z , 0 implies

X′
(
Y − X̂̂

β
)

= 0

Thus

̂̂
β =

(
X′X

)−1 X′Y
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The differential with respect to Z is

d log L (β, Z|Y) = d
[
n + a − p − 1

2
log |Z| −

1
2

Tr
(
Z

[
(Y − Xβ)′ (Y − Xβ) + B−1

])]
= d

(
n + a − p − 1

2
log |Z|

)
− d

[
1
2

Tr
(
Z

[
(Y − Xβ)′ (Y − Xβ) + B−1

])]
(4.55)

To obtain the maximum likelihood estimate ̂̂Z, note that

d log |Z| = Tr
(
Z−1

)
dZ

=
[
D′p vec

(
Z−1

)]′
vech (dZ) (4.56)

using Lemma 4.25 and

d Tr
(
Z

[
(Y − Xβ)′ (Y − Xβ) + B−1

])
= Tr

([
(Y − Xβ)′ (Y − Xβ) + B−1

]
dZ

)
=

(
D′p vec

[
(Y − Xβ)′ (Y − Xβ) + B−1

])′
vech (dZ) (4.57)

using Lemma 4.24. Substituting Equations (4.56) and (4.57) into Equation (4.55) yields

d log L (β, Z|Y) =
n + a − p − 1

2

[
D′p vec

(
Z−1

)]′
vech (dZ)

−
1
2

(
D′p vec

[
(Y − Xβ)′ (Y − Xβ) + B−1

])′
vech (dZ)

so that

∂

∂ [vech (Z)]′
log L (β, Z|Y) =

n + a − p − 1
2

[
D′p vec

(
Z−1

)]′
−

1
2

(
D′p vec

[
(Y − Xβ)′ (Y − Xβ) + B−1

])′
by the First Identification Theorem. Substituting ̂̂SS from Equation (4.50) gives

∂

∂ [vech (Z)]′
log L (β, Z|Y) =

n + a − p − 1
2

[
D′p vec

(
Z−1

)]′
−

1
2

[
D′p vec

(̂̂SS + B−1
)]′
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This can be rearranged to give

∂

∂ [vec (Z)]′
log L (β, Z|Y) =

[
D′p vec

(
n + a − p − 1

2
Z−1

)]′
−

(
D′p vec

[
1
2

(̂̂SS + B−1
)])′

=

(
D′p vec

(
n + a − p − 1

2
Z−1

)
− D′p vec

[
1
2

(̂̂SS + B−1
)])′

=

(
D′p vec

[
n + a − p − 1

2
Z−1 −

1
2

(̂̂SS + B−1
)])′

Let

O =
n + a − p − 1

2
Z−1 −

1
2

(̂̂SS + B−1
)

so that

∂

∂ [vech (Z)]′
log L (β, Z|Y) =

[
D′p vec (O)

]′
=

(
vech

[
O + O′ − diag (O)

])′ (4.58)

Setting this to 0 and noting that O is symmetric implies

2O − diag (O) = 0

which in turn implies O = 0. (For the diagonal elements oii of O, 2oii − oii = 0 ⇒ oii = 0, while

for the off-diagonal elements 2oi j − 0 = 0⇒ oi j = 0.) Thus

n + a − p − 1
2

̂̂Z−1 −
1
2

(̂̂SS + B−1
)

= 0

Solving for ̂̂Z−1 gives

̂̂Z−1 =
1

n + a − p − 1

(̂̂SS + B−1
)
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or

̂̂Z = (n + a − p − 1)
(̂̂SS + B−1

)−1

The corresponding maximum likelihood is

max
H∈H0

L (Y | Z,β, a, B) =

∣∣∣∣∣∣(n + a − p − 1)
(̂̂SS + B−1

)−1
∣∣∣∣∣∣(n+a−p−1)/2

(2π)(n+a)p/2
|B|a/2 Γp

(
a
2

)
· exp

(
−

1
2

Tr
[
(n + a − p − 1)

(̂̂SS + B−1
)−1 (̂̂SS + B−1

)])
.

Noting that
(̂̂SS + B−1

)−1 (̂̂SS + B−1
)

= Ip and Tr[(n + a − p − 1) Ip] = (n + a − p − 1) Tr Ip =

(n + a − p − 1) p, the likelihood can be rewritten as

max
H∈H0

L (Y | Z,β, a, B) = c2

 1∣∣∣∣∣̂̂SS + B−1

∣∣∣∣∣


(n+a−p−1)/2

(4.59)

where

c2 =
(n + a − p − 1)(n+a−p−1)p/2

(2π)(n+a)p/2
|B|a/2 Γp

(
a
2

) exp
(
−

(n + a − p − 1) p
2

)

is a constant.

Similarly, under H1, the maximum likelihood estimates are

β̂ =
(
X′X

)−1 X′Y

and

Ẑ =
1

n + a − p − 1

(
ŜS − B−1

)
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with the maximum likelihood

max
H∈H1

L (Y | Z,β, a, B) =

∣∣∣∣(n + a − p − 1)
(
ŜS + B−1

)−1∣∣∣∣(n+a−p−1)/2

(2π)(n+a)p/2
|B|a/2 Γp

(
a
2

)
· exp

(
−

1
2

Tr
[
(n + a − p − 1)

(
ŜS + B−1

)−1 (
ŜS + B−1

)])

= c2

 1∣∣∣∣ŜS + B−1
∣∣∣∣


(n+a−p−1)/2

. (4.60)

The likelihood ratio test is

Λ̃ =
maxH∈H0 L (Y | Z,β, a, B)
maxH∈H1 L (Y | Z,β, a, B)

> δ (4.61)

Substituting Equations (4.59) and (4.60) into Equation (4.61) yields

Λ̃ =


∣∣∣∣ŜS + B−1

∣∣∣∣∣∣∣∣∣̂̂SS + B−1

∣∣∣∣∣


(n+a−p−1)/2

> δ

which is equivalent to

Λ̃(n+a−p−1)/2 =

∣∣∣∣ŜS + B−1
∣∣∣∣∣∣∣∣∣̂̂SS + B−1

∣∣∣∣∣ > δ
(n+a−p−1)/2.

Thus Λ̃ is a likelihood ratio test. �

As with univariate RVM, additional information is needed before the likelihood ratio test in

Equation (4.48) can be used in hypothesis testing. Define

Σ̂ =
1

n − k
ŜS
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and

̂̂
Σ =

1
n − r

̂̂SS.

In GLM with no assumptions of Σ, ̂̂
Σ is the residual (or “within”) sums of squares under H0,

which is an unbiased estimator of Σ. (As with the univariate RVM, the unbiased estimator of the

variance-covariance matrix, rather than the maximum likelihood estimator, is used.) Furthermore,

(n − r) ̂̂Σ ∼ Wp (Σ, n − r). Similarly, (n − k) Σ̂ ∼ Wp (Σ, n − k) is the residual sums of squares

under H1. Now define S̃S, which is the sums of squares and crossproducts under RVM, as

S̃S = ŜS + B−1.

Define

Σ̃ =
1

n − k + a
S̃S.

and

˜̃
Σ =

1
n − r + a

(̂̂SS + B−1
)

as the mean sums of squares under RVM. The next theorem derives the distribution of Σ̃ (and,

by an analogous argument, ˜̃
Σ), which is used to establish the distribution of the likelihood ratio

test statistic Λ̃ and related test statistics. It also shows how estimates of a and B may be obtained

from the sample data.

Theorem 4.49. For Σ̂ and Σ̃ as above,

Σ−1
(
(n − k + a) Σ̃

)
= Σ−1

(
(n − k) Σ̂ + B−1

)
∼ Wp

(
Ip, n − k + a

)
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and

(a + p − 1) B1/2Σ̂B1/2 ∼ Fp

(
n − k, a + p − 1, a+p−1

n−k Ip

)
(4.62)

≡ GβII

(
p, n − k, a + p − 1; n−k

a+p−1 Ip, 0
)

Proof. From standard GLM theory, the density function of (n − k) Σ̂ is

f
(
(n − k) Σ̂

)
=

∣∣∣∣(n − k) Σ̂
∣∣∣∣(n−k−p−1)/2 ∣∣∣Σ−1

∣∣∣(n−k)/2

2(n−k)p/2Γp

(
n−k

2

) exp
(
−

1
2

Tr
[
Σ−1 (n − k) Σ̂

])

so that

f
(
Σ̂
)

=
(n − k)

∣∣∣∣(n − k) Σ̂
∣∣∣∣(n−k−p−1)/2 ∣∣∣Σ−1

∣∣∣(n−k)/2

2(n−k)p/2Γp

(
n−k

2

) exp
(
−

1
2

Tr
[
Σ−1 (n − k) Σ̂

])

Analogous to univariate RVM, let Σ−1 ∼ Wp (B, a). The joint density of Σ̂ and Σ−1 is

L
(
Σ̂,Σ−1

)
=

(n − k)
∣∣∣∣(n − k) Σ̂

∣∣∣∣(n−k−p−1)/2 ∣∣∣Σ−1
∣∣∣(n−k)/2

2(n−k)p/2Γp

(
n−k

2

) exp
(
−

1
2

Tr
[
Σ−1 (n − k) Σ̂

])
Wp

(
Σ−1; B, a

)
,

which is

L
(
Σ̂,Σ−1

)
=

(n − k)
∣∣∣∣(n − k) Σ̂

∣∣∣∣(n−k−p−1)/2 ∣∣∣Σ−1
∣∣∣(n−k)/2

2(n−k)p/2Γp

(
n−k

2

) exp
(
−

1
2

Tr
[
Σ−1 (n − k) Σ̂

])

·

∣∣∣Σ−1
∣∣∣(a−p−1)/2

2ap/2 |B|a/2 Γp

(
a
2

) exp
(
−

1
2

Tr
[
B−1Σ−1

])

after explicitly stating the Wishart distribution. This simplifies to

L
(
Σ̂,Σ−1

)
=

(n − k)(n−k−p+1)/2

2(n−k+a)p/2 |B|a/2 Γp

(
n−k

2

)
Γp

(
a
2

) ∣∣∣∣ Σ̂ ∣∣∣∣(n−k−p−1)/2 ∣∣∣Σ−1
∣∣∣(n−k+a−p−1)/2

· exp
(
−

1
2

Tr
[
Σ−1

(
(n − k) Σ̂ + B−1

)])
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This is equivalent to

L
(
Σ̂,Σ−1

)
= c1

∣∣∣∣Σ̂∣∣∣∣(n−k−p−1)/2

|Σ|(n−k+a−p−1)/2 exp
(
−

1
2

Tr
[
Σ−1

(
(n − k) Σ̂ + B−1

)])
(4.63)

where

c1 =
(n − k)(n−k−p+1)/2

2(n−k+a)p/2 |B|a/2 Γp

(
n−k

2

)
Γp

(
a
2

)
is a constant. Let

U = Σ−1
(
(n − k) Σ̂ + B−1

)
(4.64)

and

V = (a + p − 1)1/2 B1/2Σ̂B1/2 (a + p − 1)1/2 . (4.65)

This implies

Σ̂ = (a + p − 1)−1/2 B−1/2VB−1/2 (a + p − 1)−1/2 ,

Σ−1 = U
(
(n − k) Σ̂ + B−1

)−1
= U

(
n − k

a + p − 1
B−1/2VB−1/2 + B−1

)−1

,

and

Σ =

(
n − k

a + p − 1
B−1/2VB−1/2 + B−1

)
U−1.
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The Jacobian of the transformation is

JΣ−1,Σ̂→U,V =

∣∣∣∣∣∣∣∣∣∣∣∣∣
∂Σ−1

∂U′
∂Σ−1

∂V′

∂Σ̂

∂U′
∂Σ̂

∂V′

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
∂Σ−1

∂U′
∂Σ−1

∂V′

0
∂Σ̂

∂V′

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∂Σ−1

∂U′

∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∂Σ̂∂V′

∣∣∣∣∣∣∣
= JΣ−1→U JΣ̂→V.

Using Lemmas 4.28 and 4.30,

JΣ−1→U =

(∣∣∣∣∣ n − k
a + p − 1

B−1/2VB−1/2 + B−1
∣∣∣∣∣−1)p

=
1∣∣∣∣ n−k

a+p−1 B−1/2VB−1/2 + B−1
∣∣∣∣p

and

JΣ̂→V =
∣∣∣(a + p − 1)1/2 B1/2

∣∣∣−(p+1)

=
1

|(a + p − 1) B|(p+1)/2

Thus

JΣ−1,Σ̂→U,V =
1

|(a + p − 1) B|(p+1)/2
∣∣∣∣ n−k
a+p−1 B−1/2VB−1/2 + B−1

∣∣∣∣p (4.66)
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Applying standard change of variables with the Jacobian in Equation (4.66) gives

L (U,V) = c1

∣∣∣(a + p − 1)−1 B−1/2VB−1/2
∣∣∣(n−k−p−1)/2∣∣∣∣(a + p − 1)−1 B−1/2

(
(n − k) V + (a + p − 1) Ip

)
B−1/2U−1

∣∣∣∣(n−k+a+p−1)/2 exp
(
−

1
2

Tr U
)

·
1

|(a + p − 1) B|(p+1)/2
∣∣∣∣ n−k
a+p−1 B−1/2VB−1/2 + B−1

∣∣∣∣p
This is equivalent to

L (U,V) = c2
|V|(n−k−p−1)/2∣∣∣∣ n−k

a+p−1V + Ip

∣∣∣∣(n−k+a+p−1)/2 ∣∣∣U−1
∣∣∣(n−k+a+p−1)/2

exp
(
−

1
2

Tr U
)

(4.67)

where

c2 = c1

∣∣∣(a + p − 1)−1 B−1
∣∣∣n−k−p−1∣∣∣B−1

∣∣∣n−k+a+p−1

is a constant. Equation (4.67) separates into

L (U,V) = c2
|V|(n−k−p−1)/2∣∣∣∣ n−k

a+p−1V + Ip

∣∣∣∣(n−k+a+p−1)/2 · |U|
(n−k+a+p−1)/2 exp

(
−

1
2

Tr U
)

Using the definition of the multivariate F and Wishart distributions,

L (U,V) ∝ Fp

(
n − k, a + p − 1; a+p−1

n−k Ip

)
(V) ·Wp

(
Ip, n − k + a

)
(U) . (4.68)

Thus Σ−1
(
(n − k) Σ̂ + B−1

)
= Σ−1

(
ŜS + B−1

)
∼ Wp

(
Ip, n − k + a

)
and (a + p − 1) B1/2Σ̂B1/2 ∼

Fp

(
n − k, a + p − 1; a+p−1

n−k Ip

)
. �

In standard multivariate GLM theory (e.g., Johnson and Wichern, 2002, sections 6.4 and 7.7),

without any assumptions on the population covariance matrix Σ, the maximum likelihood esti-

mators of β under H0 and H1 are ̂̂
β and β̂, as noted in Equations (4.47) and (4.46) respectively.

Similarly, under standard GLM theory, the maximum likelihood estimators of Σ under H0 and H1
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are 1
n
̂̂SS and 1

n ŜS respectively. This leads to the likelihood ratio test

Λ =


∣∣∣∣1
n ŜS

∣∣∣∣∣∣∣∣∣1
n
̂̂SS

∣∣∣∣∣


n/2

=


∣∣∣∣ŜS

∣∣∣∣∣∣∣∣∣̂̂SS
∣∣∣∣∣


n/2

for testing the hypothesis H0 : β ∈ ω versus H1 : β ∈ Rk.

In standard GLM theory, the sums of squares and crossproducts ŜS ∼ Wp (n − k,Σ) under

H0. The extra sums of squares and crossproducts, defined as the difference between the models

fit under H0 and H1, equals ̂̂SS − ŜS and is distributed as Wp (k − r,Σ) by Cochran’s Theorem

(Cochran, 1934). Furthermore, by Craig’s Theorem (Craig, 1943), ̂̂SS − ŜS is independent of

ŜS. Thus, Σ−1/2
(
ŜS

)
Σ−1/2 ∼ Wp

(
n − k, Ip

)
and Σ−1/2

(̂̂SS − ŜS
)
Σ−1/2 ∼ Wp

(
k − r, Ip

)
. Using the

definition of Wilks’ lambda,

∣∣∣∣Σ−1/2
(
ŜS

)
Σ−1/2

∣∣∣∣∣∣∣∣∣Σ−1/2
(
ŜS

)
Σ−1/2 + Σ−1/2

(̂̂SS − ŜS
)
Σ−1/2

∣∣∣∣∣ =

∣∣∣∣Σ−1/2
(
ŜS

)
Σ−1/2

∣∣∣∣∣∣∣∣∣Σ−1/2
(̂̂SS

)
Σ−1/2

∣∣∣∣∣ ∼ Λ (p, n − k, k − r)

Since ∣∣∣∣Σ−1/2
(
ŜS

)
Σ−1/2

∣∣∣∣∣∣∣∣∣Σ−1/2
(̂̂SS

)
Σ−1/2

∣∣∣∣∣ =

∣∣∣Σ−1/2
∣∣∣ ∣∣∣∣ŜS

∣∣∣∣ ∣∣∣Σ−1/2
∣∣∣∣∣∣Σ−1/2

∣∣∣ ∣∣∣∣∣̂̂SS
∣∣∣∣∣ ∣∣∣Σ−1/2

∣∣∣
the distribution of the likelihood ratio statistic can be found using the relationship

Λ2/n =

∣∣∣∣ŜS
∣∣∣∣∣∣∣∣∣̂̂SS
∣∣∣∣∣ ∼ Λ (p, n − k, k − r)

with the cutoff value chosen to achieve the desired level of significance. Alternatively, since Λ

is a likelihood ratio statistic, it follows that −2 log Λ = −2
(
log ŜS − log ̂̂SS

)
∼ χ2

k−r. The cutoff

value for −2 log Λ would also be chosen to achieve the desired level of significance.

The results of Theorems 4.48 and 4.49 lead to modifications in standard multivariate GLM
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theory for hypothesis tests under the RVM assumptions. Establishing the modified hypothesis

tests requires the distribution of the quantities corresponding to the statistics in standard GLM

theory. Theorem 4.49 shows that Σ−1
(
ŜS + B−1

)
∼ Wp

(
Ip, n − k + a

)
; an analogous argument

establishes that Σ−1
(̂̂SS + B−1

)
∼ Wp

(
Ip, n − r + a

)
. The extra sums of squares and crossprod-

ucts under the RVM assumptions equals
(̂̂SS + B−1

)
−

(
ŜS + B−1

)
=

̂̂SS − ŜS, so that the extra

sums of squares and crossproducts is distributed as Wp (k − r,Σ) under RVM. Consequently,

Σ−1/2
[(̂̂SS + B−1

)
−

(
ŜS + B−1

)]
Σ−1/2 = Σ−1/2

[̂̂SS − ŜS
]
Σ−1/2 ∼ Wp

(
k − r, Ip

)
. The extra sums

of squares and crossproducts is also independent of ŜS + B−1, since the latter quantity depends on

the data only through ŜS.

Unfortunately, under RVM, the likelihood ratio test Λ̃ given in Equation (4.48) no longer has

a Wilks’ lambda distribution. Note that Λ̃ may be expressed as

Λ̃(n+a−p−1)/2 =

∣∣∣∣ŜS + B−1
∣∣∣∣∣∣∣∣∣̂̂SS + B−1

∣∣∣∣∣
=

∣∣∣∣ŜS + B−1
∣∣∣∣∣∣∣∣∣(ŜS + B−1

)
+

[̂̂SS − ŜS
]∣∣∣∣∣

=

∣∣∣Σ−1/2
∣∣∣ ∣∣∣∣ŜS + B−1

∣∣∣∣ ∣∣∣Σ−1/2
∣∣∣∣∣∣Σ−1/2

∣∣∣ ∣∣∣∣∣(ŜS + B−1
)

+

[̂̂SS − ŜS
]∣∣∣∣∣ ∣∣∣Σ−1/2

∣∣∣
=

∣∣∣∣Σ−1/2
(
ŜS + B−1

)
Σ−1/2

∣∣∣∣∣∣∣∣∣Σ−1/2
(
ŜS + B−1

)
Σ−1/2 + Σ−1/2

[̂̂SS − ŜS
]
Σ−1/2

∣∣∣∣∣ (4.69)

The determinant
∣∣∣∣Σ−1/2

(
ŜS + B−1

)
Σ−1/2

∣∣∣∣ in the numerator of Equation (4.69) is easily rearranged

to
∣∣∣∣Σ−1

(
ŜS + B−1

)∣∣∣∣. However, no such arrangement of the quantity Σ−1/2
(̂̂SS + B−1

)
Σ−1/2 in the

denominator is possible. Since Σ−1/2
(̂̂SS + B−1

)
Σ−1/2 does not follow a standard Wishart distri-

bution, Λ̃ does not meet the conditions of Wilks’ lambda in Definition 4.47 under this approach.

A similar problem arises if the Cholesky decomposition is used. Let Σ−1 be decomposed as

Σ−1 = Σ∗Σ∗′, where Σ∗ is a lower triangular matrix. Then Σ∗′
[̂̂SS − ŜS

]
Σ∗ ∼ Wp

(
Ip, k − r

)
. The
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likelihood ratio test becomes

Λ̃(n+a−p−1)/2 =

∣∣∣∣ŜS + B−1
∣∣∣∣∣∣∣∣∣̂̂SS + B−1

∣∣∣∣∣
=

∣∣∣∣ŜS + B−1
∣∣∣∣∣∣∣∣∣(ŜS + B−1

)
+

[̂̂SS − ŜS
]∣∣∣∣∣

=
|Σ∗′|

∣∣∣∣ŜS + B−1
∣∣∣∣ |Σ∗|

|Σ∗′|

∣∣∣∣∣(ŜS + B−1
)

+

[̂̂SS − ŜS
]∣∣∣∣∣ |Σ∗|

=

∣∣∣∣Σ∗′ (ŜS + B−1
)
Σ∗

∣∣∣∣∣∣∣∣∣Σ∗′ (ŜS + B−1
)
Σ∗ + Σ∗′

[̂̂SS − ŜS
]
Σ∗

∣∣∣∣∣ (4.70)

Again the determinant in the numerator is easily rearranged to
∣∣∣∣Σ−1

(
ŜS + B−1

)∣∣∣∣, but no such ar-

rangement of the quantity Σ∗′
(̂̂SS + B−1

)
Σ∗ in the denominator is possible. As Σ∗′

(̂̂SS + B−1
)
Σ∗

does not follow a standard Wishart distribution, Λ̃ does not meet the conditions of Wilks’ lambda

in Definition 4.47 under this approach either.

An alternative is to consider

Λ̃(n+a−p−1)/2 =

∣∣∣Σ−1
∣∣∣ ∣∣∣∣ŜS + B−1

∣∣∣∣∣∣∣Σ−1
∣∣∣ ∣∣∣∣∣(ŜS + B−1

)
+

[̂̂SS − ŜS
]∣∣∣∣∣

=

∣∣∣∣Σ−1
(
ŜS + B−1

)∣∣∣∣∣∣∣∣∣Σ−1
(
ŜS + B−1

)
+ Σ−1

[̂̂SS − ŜS
]∣∣∣∣∣ (4.71)

However, note that it is the distribution of Σ−1/2
[̂̂SS − ŜS

]
Σ−1/2 that is Wp

(
Ip, k − r

)
; the distri-

bution of Σ−1
[̂̂SS − ŜS

]
is

∣∣∣Σ−1
∣∣∣ Wp

(
Ip, k − r

)
. Under this approach, Λ̃ still does not meet the

conditions of the Wilks’ lambda in Definition 4.47 and does not follow this distribution.

Another alternative is to reformulate the transformations given in Equations (4.64) and (4.65)

so that the determinant in Equation (4.69) or Equation (4.70) may be evaluated. Beginning with
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the joint likelihood in Equation (4.63), which is

L
(
Σ̂,Σ−1

)
= c1

∣∣∣∣Σ̂∣∣∣∣(n−k−p−1)/2

|Σ|(n−k+a−p−1)/2 exp
(
−

1
2

Tr
[
Σ−1

(
(n − k) Σ̂ + B−1

)])

= c1

∣∣∣∣Σ̂∣∣∣∣(n−k−p−1)/2

|Σ|(n−k+a−p−1)/2 exp
(
−

1
2

Tr
[
Σ−1/2

(
(n − k) Σ̂ + B−1

)
Σ−1/2

])
,

consider the transformations

U = Σ−1/2
(
(n − k) Σ̂ + B−1

)
Σ−1/2

and

V = (a − p − 1)1/2 B1/2Σ̂B1/2 (a − p − 1)1/2 .

The Jacobian of the transformation remains JΣ−1→U JΣ̂→V, but now JΣ−1→U is given by

JΣ−1→U = JΣ−1→Σ−1/2 JΣ−1/2→U

= JΣ−1→Σ−1/2
1

JU→Σ−1/2

using Properties (1) and (2) of Jacobians. Using Lemma 4.29,

JΣ−1→Σ−1/2 =

p∏
i≤ j

(
λi + λ j

)

where λ1 ≥ λ2 ≥ · · · ≥ λp are the ordered eigenvalues of Σ1/2. Using Lemma 4.30,

JU→Σ−1/2 =

p∏
i≤ j

(
ηi + η j

)
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where η1 ≥ η2 ≥ · · · ≥ ηp are the ordered eigenvalues of Σ−1/2
(
(n − k) Σ̂ + B−1

)
. Thus

JΣ−1→U =

∏p
i≤ j

(
λi + λ j

)
∏p

i≤ j

(
ηi + η j

) .
To derive the joint likelihood of U and V, note that

|U| =
∣∣∣∣Σ−1/2

(
(n − k) Σ̂ + B−1

)
Σ−1/2

∣∣∣∣
=

∣∣∣Σ−1/2
∣∣∣ ∣∣∣∣(n − k) Σ̂ + B−1

∣∣∣∣ ∣∣∣Σ−1/2
∣∣∣

=
∣∣∣Σ−1/2

∣∣∣ ∣∣∣Σ−1/2
∣∣∣ ∣∣∣∣(n − k) Σ̂ + B−1

∣∣∣∣
=

∣∣∣Σ−1
∣∣∣ ∣∣∣∣(n − k) Σ̂ + B−1

∣∣∣∣ ,
so that

∣∣∣Σ−1
∣∣∣ =

∣∣∣∣(n − k) Σ̂ + B−1
∣∣∣∣−1
|U| .

Thus the likelihood is

L (U,V) = c1

∣∣∣(a − p − 1)−1 B−1/2VB−1/2
∣∣∣(n−k−p−1)/2

∣∣∣∣∣ n − k
a − p − 1

B−1/2VB−1/2 + B−1
∣∣∣∣∣−(n−k+a−p−1)/2

· |U|(n−k+a−p−1)/2 exp
(
−

1
2

Tr U
)
·

∏p
i≤ j

(
λi + λ j

)
∏p

i≤ j

(
ηi + η j

)
This is equivalent to

L (U,V) = c2
|V|(n−k−p−1)/2∣∣∣∣ n−k

a−p−1 B−1/2VB−1/2 + B−1
∣∣∣∣(n−k+a−p−1)/2 |U|

(n−k+a−p−1)/2 exp
(
−

1
2

Tr U
) ∏p

i≤ j

(
λi + λ j

)
∏p

i≤ j

(
ηi + η j

)
= c3

|V|(n−k−p−1)/2∣∣∣∣ n−k
a−p−1V + Ip

∣∣∣∣(n−k+a−p−1)/2 |U|
(n−k+a−p−1)/2 exp

(
−

1
2

Tr U
) ∏p

i≤ j

(
λi + λ j

)
∏p

i≤ j

(
ηi + η j

) (4.72)
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where

c2 = c1
1

|(a − p − 1) B|(n−k−p−1)/2

and

c3 = c2
1

|B|(n−k+a−p−1)/2

are constants. The use of Equation (4.72) in the RVM method would then depend on the fac-

torization into two separate functions, with one being a function of U only and the other being

a function of V only. However, Olkin and Rubin (1964) show that the term
∏p

i≤ j(λi+λ j)∏p
i≤ j(ηi+η j) generally

cannot be factorized in this manner, providing a counterexample when p = 2. The term
∏p

i≤ j(λi+λ j)∏p
i≤ j(ηi+η j)

cannot be manipulated to eliminate the Σ−1/2 term and produce a function of U only. A more

general approach is to use the results of Equations (4.27) and (4.29) to obtain

∏p
i≤ j

(
λi + λ j

)
∏p

i≤ j

(
ηi + η j

) =

∣∣∣∣Lp

(
Ip ⊗ Σ

−1/2 + Σ−1/2 ⊗ Ip

)
Dp

∣∣∣∣∣∣∣∣Lp

(
Ip ⊗ Σ−1/2

[
(n − k) Σ̂ + B−1

]
+ Σ−1/2

[
(n − k) Σ̂ + B−1

]
⊗ Ip

)
Dp

∣∣∣∣
=

∣∣∣∣Lp

(
Ip ⊗ Σ

−1/2 + Σ−1/2 ⊗ Ip

)
Dp

∣∣∣∣
·

∣∣∣∣Lp

(
Ip ⊗ Σ

−1/2
[
(n − k) Σ̂ + B−1

]
+ Σ−1/2

[
(n − k) Σ̂ + B−1

]
⊗ Ip

)
Dp

∣∣∣∣−1
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Using Lemma 4.14 and Property (10) of the elimination and duplication matrices gives

∣∣∣∣Lp

(
Ip ⊗ Σ

−1/2 + Σ−1/2 ⊗ Ip

)
Dp

∣∣∣∣ ∣∣∣∣Lp

(
Ip ⊗ Σ

−1/2
[
(n − k) Σ̂ + B−1

]
+ Σ−1/2

[
(n − k) Σ̂ + B−1

]
⊗ Ip

)
Dp

∣∣∣∣−1

=
∣∣∣∣Lp

(
Ip ⊗ Σ

−1/2 + Σ−1/2 ⊗ Ip

)
Dp

∣∣∣∣ ∣∣∣∣Lp

(
Ip ⊗ Σ

−1/2
[
(n − k) Σ̂ + B−1

]
+ Σ−1/2

[
(n − k) Σ̂ + B−1

]
⊗ Ip

)−1
Dp

∣∣∣∣
=

∣∣∣∣Lp

(
Ip ⊗ Σ

−1/2 + Σ−1/2 ⊗ Ip

)
DpLp

(
Ip ⊗ Σ

−1/2
[
(n − k) Σ̂ + B−1

]
+ Σ−1/2

[
(n − k) Σ̂ + B−1

]
⊗ Ip

)−1
Dp

∣∣∣∣
=

∣∣∣∣Lp

(
Ip ⊗ Σ

−1/2 + Σ−1/2 ⊗ Ip

) (
Ip ⊗ Σ

−1/2
[
(n − k) Σ̂ + B−1

]
+ Σ−1/2

[
(n − k) Σ̂ + B−1

]
⊗ Ip

)−1
Dp

∣∣∣∣
so that the factorization depends on

(
Ip ⊗ Σ

−1/2
[
(n − k) Σ̂ + B−1

]
+ Σ−1/2

[
(n − k) Σ̂ + B−1

]
⊗ Ip

)
being separated into

(
Ip ⊗ Σ

−1/2 + Σ−1/2 ⊗ Ip

)
and a function of (n − k) Σ̂ + B−1 only, which gen-

erally cannot be done. Thus, the transformation U = Σ−1/2
(
(n − k) Σ̂ + B−1

)
Σ−1/2 does not lead

to a suitable formulation of the RVM method.

A similar difficulty arises if the Cholesky decomposition is used instead of the square root

decomposition. Let Σ−1 be decomposed as Σ−1 = Σ∗Σ∗′, where Σ∗ is a lower triangular matrix.

Beginning with the joint likelihood in Equation (4.63), which is

L
(
Σ̂,Σ−1

)
= c1

∣∣∣∣Σ̂∣∣∣∣(n−k−p−1)/2

|Σ|(n−k+a−p−1)/2 exp
(
−

1
2

Tr
[
Σ−1

(
(n − k) Σ̂ + B−1

)])

= c1

∣∣∣∣Σ̂∣∣∣∣(n−k−p−1)/2

|Σ|(n−k+a−p−1)/2 exp
(
−

1
2

Tr
[
Σ∗Σ∗′

(
(n − k) Σ̂ + B−1

)])

= c1

∣∣∣∣Σ̂∣∣∣∣(n−k−p−1)/2

|Σ|(n−k+a−p−1)/2 exp
(
−

1
2

Tr
[
Σ∗′

(
(n − k) Σ̂ + B−1

)
Σ∗

])
,
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consider the transformations

U = Σ∗′
(
(n − k) Σ̂ + B−1

)
Σ∗

and

V = (a − p − 1)1/2 B1/2Σ̂B1/2 (a − p − 1)1/2 .

The Jacobian of the transformation remains JΣ−1→U JΣ̂→V, but now JΣ−1→U is given by

JΣ−1→U = JΣ−1→Σ∗ JΣ∗→U

= JΣ−1→Σ∗
1

JU→Σ∗

using Properties (1) and (2) of Jacobians. Using Lemma 4.31,

JΣ−1→Σ∗ = 2p
p∏

i=1

σ
p−i+1
ii

where σii, i = 1, 2, . . . , p are the diagonal elements of Σ∗. Using Lemma 4.31,

JU→Σ∗ = 2p
p∏

i=1

σi
ii

∣∣∣∣((n − k) Σ̂ + B−1
)

[i]

∣∣∣∣
Thus

JΣ∗→U =
2p ∏p

i=1 σ
p−i+1
ii

2p
∏p

i=1 σ
i
ii

∣∣∣∣((n − k) Σ̂ + B−1
)

[i]

∣∣∣∣
=

∏p
i=1 σ

p−2i+1
ii∏p

i=1

∣∣∣∣((n − k) Σ̂ + B−1
)

[i]

∣∣∣∣ .
Since σii are the diagonal elements of Σ∗, it is clear that the use of the Cholesky decompo-

sition will not lead to a transformation in terms of U and V only. Thus, the transformation
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U = Σ∗
(
(n − k) Σ̂ + B−1

)
Σ∗ does not lead to a suitable formulation of the RVM method.

Although an exact distribution for Λ̃ is not available, since it is a likelihood ratio test, the

value of −2 log Λ̃ approximately follows a χ2 distribution and may be used for hypothesis testing.

This is an asymptotic approximation, so the accuracy of the test may be compromised for small

sample sizes. The likelihood ratio test in Equation (4.48) may be written as

Λ̃(n+a−p−1)/2 =

∣∣∣∣ŜS + B−1
∣∣∣∣∣∣∣∣∣̂̂SS + B−1

∣∣∣∣∣
=

∣∣∣Σ−1
∣∣∣ ∣∣∣∣ŜS + B−1

∣∣∣∣∣∣∣Σ−1
∣∣∣ ∣∣∣∣∣̂̂SS + B−1

∣∣∣∣∣
=

∣∣∣∣Σ−1
(
ŜS + B−1

)∣∣∣∣∣∣∣∣∣Σ−1
(̂̂SS + B−1

)∣∣∣∣∣ .

The distributional results in Equation (4.68) show that Σ−1
(
(n − k) Σ̂ + B−1

)
∼ Wp

(
Ip, n − k + a

)
and, by extension, that Σ−1

(
(n − k) ̂̂Σ + B−1

)
∼ Wp

(
Ip, n − r + a

)
. This implies that the degrees

of freedom for the χ2 test are k − r. Using these results, the multivariate RVM may be applied

to a wide variety of GLMs in a similar manner to the univariate RVM. For the multivariate

RVM, the ratio of the generalized variances under the null and alternative hypotheses are used

in conducting the hypothesis tests, and both the numerator and denominator sums of squares and

degrees of freedom are adjusted. The hyperparameters a and B may be estimated from Σ̂, the

residuals from the standard GLM without any assumptions on the distribution of Σ−1, using a nu-

merical maximization routine. However, previous studies have noted problems of identifiability

when estimating an unstructured prior for the Wishart distribution, even when numerical opti-

mization routines report convergence to a solution (Le et al., 1998). To avoid such problems in

the multivariate RVM method, structure may be imposed on the B matrix to reduce the number

of parameters estimated. A compound symmetric structure is a reasonable choice for microarray

studies based on the assumed structure of the sample variance-covariance matrix as well as the

previous work by Archer et al. (2006). Once estimates of the hyperparameters are obtained, the
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value of −2 log Λ̃ may be computed and compared to the χ2
k−r distribution with the appropriate

cutoff value.

The multivariate RVM method may be applied to class comparison problems for determining

the significance of gene expression changes between conditions. For such a parameterization, k

would represent the number of conditions, and the columns of X would be indicator variables

denoting the condition of each chip in the experiment. The reduced model would correspond

to the hypothesis that k − r of the conditions are equivalent, with the corresponding reduction

in the dimension of X. The class comparison problem then becomes a multivariate analysis of

variance (MANOVA) problem with adjustment in the residuals and degrees of freedom for the

test statistic based on the RVM assumptions. Thus, although the multivariate RVM method is not

currently implemented in software packages for microarray data analysis, hypothesis tests based

on multivariate RVM may be carried out using standard packages for MANOVA or multivariate

regression.

4.3.5 Modified Random Variance Model for Singular Covariance Matrices

The preceding formulation of the multivariate RVM method relies on the sample covariance ma-

trix Σ̂ (or, equivalently, the samples sums of squares and crossproducts ŜS ) being nonsingular

and of full rank. These conditions require that n − k > p; otherwise, the Wishart density function

given in Definition 4.34 does not exist. The requirement that n−k > p may be unrealistic for most

microarray studies; despite efforts to increase the sample size for microarray experiments, many

studies still use only a small number of chips (Jain et al., 2003). For example, the most com-

mon probeset size on the human U95 and U133 GeneChips is 11 probes. Assuming a two class

comparison, 7 chips would be required in each class to achieve an adequate number of samples.

Other types of chips, such as the Drosophilia DrosGenome1 chip with 14 probes per probeset,

would require an even larger number of replicates. However, the requirement that n − k > p

may be removed by utilizing the pseudo-Wishart distribution in Definition 4.35 when n − k ≤ p.

However, based on Lemma 4.36, a different computational formula would need to be used in
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software implementations to account for the differences in the nonsingular and pseudo-Wishart

distributions.

Theorem 4.48 is unaltered by the sample covariance matrix Σ̂ being singular, with the assump-

tion that B and Σ are of full rank. Thus, the same likelihood ratio test may be used for hypothesis

testing in the singular case as in the nonsingular. However, modifications to Theorem 4.49 are

necessary to incorporate the pseudo-Wishart distribution of Σ̂. These modifications lead to the

following theorem.

Theorem 4.50. Assume that n − k ≤ p, so that Σ̂ is singular. Then, for Σ̂ and Σ̃ defined as in

nonsingular multivariate RVM,

Σ−1
(
(n − k + a) Σ̃

)
= Σ−1

(
(n − k) Σ̂ + B−1

)
∼ Wp

(
Ip, n − k + a

)
and

(a + p − 1) B−1/2Σ̂B−1/2 ∼ Fn−k
p

(
n − k, a + p − 1; a+p−1

n−k Ip

)
≡ Mβn−k

II

(
p, n − k, a + p − 1; n−k

a+p−1 Ip

)
Proof. From singular GLM theory, (n − k) Σ̂ ∼ Wp (n − k,Σ). Since n − k < p by assumption,

(n − k) Σ̂ has a pseudo-Wishart distribution. Let L1 = diag (λ1, λ2, . . . , λn−k), where λ1 ≥ λ2 ≥

· · · ≥ λn−k are the first n − k ordered eigenvalues of (n − k) Σ̂, and let E1 be the matrix of the

corresponding eigenvectors, so that E1E′1 = In−k. Then the density of (n − k) Σ̂ is given by

f
(
(n − k) Σ̂

)
=
π(−p(n−k)+(n−k)2)/2 |L1|

(n−k−p−1)/2
∣∣∣Σ−1

∣∣∣(n−k)/2

2(n−k)p/2Γn−k

(
n−k

2

) exp
(
−

1
2

Tr
[
Σ−1 (n − k) Σ̂

])

Under RVM, Σ−1 ∼ Wp (B, a), where B is assumed to be full rank. The joint density of Σ̂ and Σ−1
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is

L
(
Σ̂,Σ−1

)
=
π(−p(n−k)+(n−k)2)/2 (n − k) |L1|

(n−k−p−1)/2
∣∣∣Σ−1

∣∣∣(n−k)/2

2(n−k)p/2Γn−k

(
n−k

2

) exp
(
−

1
2

Tr
[
Σ−1 (n − k) Σ̂

])

·

∣∣∣Σ−1
∣∣∣(a−p−1)/2

2ap/2 |B|a/2 Γp

(
a
2

) exp
(
−

1
2

Tr
[
B−1Σ−1

])
.

This simplifies to

L
(
Σ̂,Σ−1

)
=

π(−p(n−k)+(n−k)2)/2 (n − k)

2(n−k+a)p/2 |B|a/2 Γn−k

(
n−k

2

)
Γp

(
a
2

) |L1|
(n−k−p−1)/2

∣∣∣Σ−1
∣∣∣(n−k+a−p−1)/2

· exp
(
−

1
2

Tr
[
Σ−1

(
(n − k) Σ̂ + B−1

)])

This is equivalent to

= c1
|L1|

(n−k−p−1)/2

|Σ|(n−k+a−p−1)/2 exp
(
−

1
2

Tr
[
Σ−1

(
(n − k) Σ̂ + B−1

)])

where

c1 =
π(−p(n−k)+(n−k)2)/2 (n − k)

2(n−k+a)p/2 |B|a/2 Γn−k

(
n−k

2

)
Γp

(
a
2

)
is a constant. Let

U = Σ−1
(
(n − k) Σ̂ + B−1

)
and

V = (a + p − 1)1/2 B1/2Σ̂B1/2 (a + p − 1)1/2
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so that

Σ−1 = U
(
(n − k) Σ̂ + B−1

)−1

= U
(

n − k
a + p − 1

B−1/2VB−1/2 + B−1
)−1

and

Σ̂ = (a + p − 1)−1/2 B−1/2VB−1/2 (a + p − 1)−1/2 .

Let L2 = diag (κ1, κ2, . . . , κn−k), where κ1 ≥ κ2 ≥ · · · ≥ κn−k are the first n−k ordered eigenvalues of

V, and let E2 be the matrix of the corresponding eigenvectors, so that E2E′2 = In−k. The Jacobian

of the transformation is

JΣ−1,Σ̂→U,V =

∣∣∣∣∣∣∣∣∣∣∣∣∣
∂Σ−1

∂U′
∂Σ−1

∂V′

∂Σ̂

∂U′
∂Σ̂

∂V′

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
∂Σ−1

∂U′
∂Σ−1

∂V′

0
∂Σ̂

∂V′

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∂Σ−1

∂U′

∣∣∣∣∣∣
∣∣∣∣∣∣∣ ∂Σ̂∂V′

∣∣∣∣∣∣∣
= JΣ−1→U JΣ̂→V.

Then

JΣ−1→U =

(∣∣∣∣∣ n − k
a + p − 1

B−1/2VB−1/2 + B−1
∣∣∣∣∣−1)p

=
1∣∣∣∣ n−k

a+p−1 B−1/2VB−1/2 + B−1
∣∣∣∣p
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and

JΣ̂→V =
|L2|

(n−k−p−1)/2
|L1|

(p+1−(n−k))/2

|(a + p − 1) B|(n−k)/2

by Lemma 4.32. Thus

JΣ−1,Σ̂→U,V =
|L2|

(n−k−p−1)/2
|L1|

(p+1−(n−k))/2

|(a + p − 1) B|(n−k)/2
∣∣∣∣ n−k
a+p−1 B−1/2VB−1/2 + B−1

∣∣∣∣p (4.73)

Applying standard change of variables with the Jacobian in Equation (4.73) gives

L (U,V) = c1 |L1|
(n−k−p−1)/2

∣∣∣∣∣∣∣U
(

n − k
a − p + 1

B−1/2VB−1/2 + B−1
)−1

∣∣∣∣∣∣∣
(n−k+a−p−1)/2

· exp
(
−

1
2

Tr U
)
·

|L2|
(n−k−p−1)/2

|L1|
(p+1−(n−k))/2

|(a − p − 1) B|(n−k)/2
∣∣∣∣ n−k
a−p+1 B−1/2VB−1/2 + B−1

∣∣∣∣p
This is equivalent to

L (U,V) = c2
1∣∣∣∣ n−k

a+p−1 B−1/2VB−1/2 + B−1
∣∣∣∣(n−k+a+p−1)/2 |L2|

(n−k−p−1)/2

· |U|(n−k+a−p−1)/2 exp
(
−

1
2

Tr U
)

where

c2 = c1
1

|(a + p − 1) B|(n−k)/2
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is a constant. This can be further simplified to

L (U,V) = c2
1∣∣∣∣B−1/2

(
n−k

a+p−1V + Ip

)
B−1/2

∣∣∣∣(n−k+a+p−1)/2 |L2|
(n−k−p−1)/2

· |U|(n−k+a−p−1)/2 exp
(
−

1
2

Tr U
)

= c3
1∣∣∣∣ n−k

a+p−1V + Ip

∣∣∣∣(n−k+a+p−1)/2 |L2|
(n−k−p−1)/2

|U|(n−k+a+p−1)/2 exp
(
−

1
2

Tr U
)

(4.74)

where

c3 = c2
1∣∣∣B−1

∣∣∣(n−k+a+p−1)/2

is a constant. Using the definitions of the singular multivariate F and Wishart distributions, Equa-

tion (4.74) separates into

L (U,V) ∝ Fn−k
p

(
n − k, a + p − 1; a+p−1

n−k Ip

)
(V) ·Wp

(
Ip, n − k + a

)
(U) . (4.75)

Thus Σ−1
(
ŜS + B−1

)
is distributed as Wp

(
Ip, n − k + a

)
and (a + p − 1) B1/2Σ̂B1/2 is distributed

as Fn−k
p

(
p, n − k, a + p − 1; a+p−1

n−k Ip

)
. �

Using this result, the multivariate RVM may also be applied to GLMs when the sample co-

variance matrix is singular. The generalized variances under the null and alternative hypotheses

are computed as in the case of RVM with a nonsingular covariance matrix. The hyperparameters

a and B are estimated from Σ̂ using a numerical maximization routine, with the singular multi-

variate F distribution being fitted. The hyperparameters are then used to adjust the numerator and

denominator sums of squares in the likelihood ratio test. Values of the likelihood ratio test are

then compared to cutoff values from the χ2 distribution with the adjusted degrees of freedom to

determine significance.
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4.4 Parametric Error Models for Intensities

A third type of multivariate error model would be a parametric model for both the probe inten-

sities and the variances. This approach is implemented in the mmgMOS algorithm, which is

extensively reviewed in Section 1.8.2. The error model is constructed by first modeling the probe

level intensities; in the mmgMOS algorithm, the gamma distribution is selected for this purpose.

After fitting the model for the intensities, the variance of the intensities can be computed using

standard formulae. The mmgMOS method is used as one of the comparison algorithms in this

research project to assess the accuracy of parametric models based on probe intensities.
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Performance Assessment

5.1 Introduction

One of the greatest challenges in the development of algorithms for the analysis of microarray

data is assessing the performance of the new method (Choe et al., 2005). Comparisons of one al-

gorithm to another without a proper reference data set are of little use. Unless the true state of gene

expression between experimental conditions is known, the investigator cannot determine whether

algorithms with larger number of genes declared significant have greater accuracy in detecting

true positives or simply have a higher number of false positives. Early studies relied on confirma-

tion of microarray results by use of independent laboratory techniques, such as Northern blotting,

quantitative PCR, or ISH (Karsten et al., 2004). However, this approach is very labor-intensive

and time-consuming, so that only a small number of genes can be independently verified. Thus,

it typically provides validation that the genes with the most significant test statistics represent

true positives, but gives little information about the overall sensitivity and specificity of a given

algorithm.

An alternative approach to assessing the accuracy of algorithms is to perform comparisons

using spike-in datasets. The general methodology for construction of spike-in datasets is to in-

troduce specific cDNA fragments into an experimental medium at prespecified concentrations.

Because the concentration of the spiked probes in each condition is known, the number of truly

differentially expressed genes is known and can be used for calculation of measures of sensitiv-

ity and specificity. Thus, application of statistical algorithms to spike-in datasets also represent

160
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an independent means of assessing the performance of the statistical method. Such datasets are

constructed by a considerable investment of time and resources, but these initial costs incurred

by creating the dataset have an enormous return, since subsequent analyses can be conducted by

any number of investigators with relatively little expense. Variations in the design of spike-in

datasets allow the assessment of algorithms in different manners. For example, one design may

be to spike all genes at a single concentration on a chip; alternatively, the concentration may

vary among genes. The former represents a simpler design and assessment, while the latter per-

mits comparisons under perhaps more realistic conditions, in which the expression differs among

genes. The experimental medium may be a hybridization solution with or without background

RNA present. Again, the former is a simpler design and assessment. The latter represents more

realistic conditions, in which the differentially expressed genes must be separated from a large

number of genes that have an unchanging level of expression, but it has the potential drawback

that the hybridization properties of the background RNA may not be fully characterized. Finally,

as with any experiment, stringent quality control measures are necessary in the construction of

spike-in datasets to avoid erroneous results. In particular, cross-hybridization among probes must

be addressed so that the list of genes expected to be declared differentially expressed is accurate.

5.2 Overview of Spike-in Studies

The first spike-in dataset was created by Affymetrix using the U95 GeneChip. This is a subset

of the data used in the development and validation of the MAS5 statistical analysis algorithm.

As detailed in the documentation accompanying this dataset, 14 experimental groups were con-

structed from 14 spiked-in human genes arranged in a Latin Square design (Tables 5.1 and 5.2).

Group 1 contains 2 genes, group 12 is empty, and the remaining groups contain 1 gene. The

concentrations of the 14 gene groups in the first experiment are 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,

128, 256, 512, and 1024pM. Each subsequent experiment rotates the spike-in concentrations by

one group, so that experiment 2 begins with 0.25pM and ends at 0pM, on up to experiment 14,

which begins with 1024pM and ends with 512pM. Experiments 13 and 14 contain four technical
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Group
Number Probeset IDs
1 37777 at

407 at
2 684 at
3 1597 at
4 38734 at
5 39058 at
6 36311 at
7 36889 at
8 1024 at
9 36202 at
10 36085 at
11 40322 at
12 empty
13 1091 at
14 1708 at

Table 5.1: Probeset Groupings for the Affymetrix U95 Spike-In Study

replicates, while experiments 1 through 12 contain only a single hybridization. Two sets of exper-

iments were performed, one set with a complex RNA background and one without. The complex

background consists of RNA isolated from biological sources, which would contain a variety of

RNA species and is intended to model the background hybridization present in most biological

experiments. For the Affymetrix U95 experiments, mRNA isolates from human pancreas were

selected. Each experiment contains 3 replicates except one (experiment C with complex back-

ground), which contains 2 replicates.

Affymetrix later produced a second spike-in dataset using the human U133 GeneChip. This

dataset uses a common complex cRNA derived from a human HeLa cell line as background.

Fourteen separate hybridizations were performed in which 42 transcripts were spiked into the

hybridization cocktail using a Latin Square design (Tables 5.3 and 5.4). These spike-in genes

contain 30 transcripts corresponding to cDNA clones isolated from a human lymphoblast cell

line. The remaining spike-in genes consist of foreign and artificial clones expected to show little

hybridization with human GeneChip probes, with 4 being bacterial sequences used as eukary-

otic controls and 8 being artificially engineered sequences believed to be unique to the human
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Table 5.2: Concentration Data for the Affymetrix U95 Spike-In Study. All concentrations are
given in pM.
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Group Group
Number Probeset IDs Number Probeset IDs
1 203508 at 2 204205 at

204563 at 204959 at
204513 s at 207655 s at

3 204836 at 4 207777 s at
205291 at 204912 at at
209795 at 205569 at

5 207160 at 6 209606 at
205692 s at 205267 at
212827 at 204417 at

7 205398 s at 8 206060 s at
209734 at 205790 at
209354 at 200665 s at

9 207641 at 10 203471 s at
207540 s at 204951 at
204430 s at 207968 s at

11 AFFX-r2-TagA at 12 AFFX-r2-TagD at
AFFX-r2-TagB at AFFX-r2-TagE at
AFFX-r2-TagC at AFFX-r2-TagF at

13 AFFX-r2-TagG at 14 AFFX-LysX-3 at
AFFX-r2-TagH at AFFX-PheX-3 at
AFFX-DapX-3 at AFFX-ThrX-3 at

Table 5.3: Probeset Groupings for the Affymetrix U133 Spike-In Study

genome. Other improvements of this dataset over the U95 dataset are a wider spread of RNA

concentrations and smaller (18 micron) chip features scanned using improved technology (the

Affymetrix GeneChip Scanner 3000).

GeneLogic has also created a spike-in dataset consisting of three conditions. The Dilution

and AML Latin Square data were previously described in the performance assessment of the S-

Score in Section 2.3. A second Latin Square dataset, called the Tonsil Latin Square dataset, was

produced in a manner similar to that of the AML Latin Square. The former differs from the latter

in that complex cRNA derived from a tonsil tissue sample was used for background hybridization

and in the arrangement of the spike-in concentrations in the Latin Square design (Table 5.5). Each

experiment contains 3 technical replicates.

Choe et al. (2005) have provided an even more ambitious spike-in dataset, called the Golden
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Table 5.4: Concentration Data for the Affymetrix U133 Spike-In Study. All concentrations are
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Table 5.5: Concentration Data for the GeneLogic Tonsil Latin Square Dataset. All concentrations
are in pM.
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Spike dataset. This experiment used the Affymetrix Drosophilia GeneChip, which has 14010

probesets. The samples for this experiment are divided into constant (C) and spike (S) conditions,

each with 3 technical replicates. The hybridization cocktail for the dataset consisted of 3860

cRNAs of known sequence spiked in at specific concentrations. The concentrations of 1309

cRNAs differ between the C and the S conditions. The fold changes range from 1.2 to 4, with

the condition S arrays always having the higher concentration (Table 5.6). The remaining 2551

sequences, having the same concentration in the C and S conditions, represent a well-defined

background population. A total of 3866 probesets should be detected as being expressed, while

1331 probesets should be identified as differentially expressed between the two conditions. (These

figures differ slightly from the number of spike-ins because some sequences match more than

one probe, while a few sequences do not match with any probes.) With approximately 10%

of the probesets differing between the C and S conditions, this dataset allows the evaluation of

algorithms in a setting that more closely resembles the typical gene expression study.

5.3 Methods for Comparisons

5.3.1 Data

Data for the Affymetrix U95 and U133 datasets were downloaded in ZIP archive format from

the Affymetrix website (http://www.affymetrix.com/support/technical/sample data/datasets.affx).

The Golden Spike dataset was downloaded as a ZIP archive from the corresponding author’s

website (http://www.ccr.buffalo.edu/halfon/spike). A CD-ROM containing the GeneLogic Dilu-

tion and Latin Square datasets in self-extracting archives was obtained free of charge by request

from the company (http://www.genelogic.com/newsroom/studies/studies.cfm). Each dataset con-

sists of a series of *.CEL files, with one file for each chip hybridized. A listing of the filenames

associated with each experiment is provided in Appendix 2.

http://www.affymetrix.com/support/technical/sample_data/datasets.affx
http://www.ccr.buffalo.edu/halfon/spike
http://www.genelogic.com/newsroom/studies/studies.cfm
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Table 5.6: Concentration Data for the Choe et al. Golden Spike Dataset
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5.3.2 Data Processing

Three methods - RMA, Logit-T, and mmgMOS - were selected for comparison to the proposed

S-Score and multivariate RVM methods. Although RMA is a probeset-level method rather than

a probe-level method, it is one of the most widely used summary methods and commonly used

as a comparator for assessing the performance of new algorithms. Logit-t and multi-mgMOS

are alternative probe-level algorithms, and their inclusion will assess the merits of the proposed

methods relative to other probe-level methods. In comparing the five methods using the spike-in

datasets, the respective *.CEL files were read into the R programming environment version 2.5.1

using the ReadAffy function in the affy package version 1.14.1. Both RMA (Section 1.5.5) and

mmgMOS (Section 1.8.2) generate expression summary values, which are then compared with

standard statistical tests. RMA expression summaries were computed using the rma function

in the affy package. Expression summaries for mmgMOS were computed using the mmgmos

function in the puma package version 1.2.0.

The S-Score (Section 4.2), multivariate RVM (Section 4.3), and Logit-t (Section 1.8.1) al-

gorithms produce a test statistic for each probeset on a GeneChip, which is a direct measure of

expression change. Multichip S-Scores were computed using the SScore function in version 1.8.0

of the sscore package. Values for the SF and SDT parameters were calculated using the Com-

puteSFandSDT function in the same package. The Pooled S-Score values were computed using

a custom modification of the SScore function. For Logit-t, the July 2003 version of the C source

code was obtained from the authors and compiled using the GNU C compiler gcc version 4.0.1.

This executable was called from within R, using the system call function, to compute the Logit-t

values. For the multivariate RVM method, probe intensity values were extracted directly from the

*.CEL files using the intensity function in the affy package. Only the PM values within a probe

pair were used in analyses. The PM intensities were log2 transformed and centered about zero

as recommended by Chu et al. (2002). Mappings of probes to probesets were obtained using the

pmindex function.

All computations were performed on a Macintosh Powerbook system with a G4 PowerPC
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processor running Mac OS X 10.4.9. Source code for all programs are provided in Appendix 1.

5.3.3 Selection of Baseline

Since analyses were conducted in a pairwise fashion between conditions, it was necessary to

specify a baseline condition to which all other conditions were compared. For the four Latin

Square datasets, Experiment 1 was selected as a baseline for analyses. For the Dilution dataset,

only Experiments 9 through 14 had sufficient chips to conduct analyses using all algorithms, and

Experiment 9 was used as a baseline for comparisons. The Golden Spike dataset contains only

two conditions, with the control (C) condition used as the baseline. For attaining optimal per-

formance, comparisons using each algorithm should identify all spiked probesets as differentially

expressed. Identification of fewer probesets among the spike-ins would be false negative findings,

while identification of probesets in addition to these would be false positive findings. Therefore,

using this information, sensitivity and specificity of comparisons made with each algorithm can

be estimated. Based on the concentration data from the various datasets, a number of false neg-

atives was to be expected. For some probesets, the relative change between the two conditions,

expressed by the fold change, was too low to be detected despite high concentrations of RNA.

For other probesets, the absolute amount of RNA may be too low to generate sufficient signal

for detection, despite a high fold change between conditions. Also, given the large number of

hypotheses being tested simultaneously, a number of false positives would also be expected.

5.3.4 Quality Assessment and Data Integrity Checks

Prior to analysis, a quality assessment was performed on each chip. Because of the nature of

the spike-in experiments, many tests for quality control, such as RNA degradation, could not

performed. The primary quality control measures were assessment of linearity and lack of fit,

which could be performed on a subset of the data. For the GeneLogic Dilution dataset, all spike-

ins on each chip have the same concentration, so that linear effects of concentration could not

be examined. However, the intensities of all probe sets at a fixed concentration level should be
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similar under the assumption of linearity. Quantile-quantile plots of the MAS5 intensity values

were used to examine the assumption that the intensities were from a single distribution with a

common mean. For the Affymetrix U95 and GeneLogic Latin Square datasets, the spike-ins have

differing concentrations, and a linear increase in signal intensity with increasing concentration

would be expected on each chip. Plots of probeset concentration versus the MAS5 intensity value

were generated for each chip. Visual inspection of linearity within a chip was supplemented with

calculation of the R2 value of the linear regression equation. Assessment of lack of fit could not

be performed as there were not multiple probes at the same concentration on each chip.

For the Affymetrix U133 Latin Square and the Golden Spike dataset, several groups of spike-

ins were present at differing concentrations, and each concentration level contained multiple

probesets. Assessment of linearity was performed by visually inspecting plots and examining

linear regression results as for the Affymetrix U95 and GeneLogic Latin Square datasets. Lack

of fit statistics were computed for probesets at the same concentration on each chip to determine

if significant differences existed. For the Golden Spike dataset, data integrity was also examined

by comparing the mapping of probesets to concentration values by two different methods. The

first method was the direct mapping of probesets to concentration available on the corresponding

author’s website. The second method was an indirect mapping of probesets to pool numbers,

followed by a mapping of pool numbers to concentrations, using supplementary data from the

original manuscript. A Perl script was written to compare the results of the indirect mapping to

that of the direct mapping to determine if any discrepancies existed. In addition, the number of

probesets assigned to each pool was checked against the values in the original manuscript for

accuracy.

5.3.5 Statistical Analysis

For each of the five algorithms, statistical tests were conducted between the baseline condition and

each of the remaining conditions in a dataset in a pairwise fashion. All replicates for each condi-

tion were included in the analysis. Expression summary values produced by RMA and mmgMOS
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were compared using the functions in the multtest package version 1.14.0 from Bioconductor. A

two-sample t-test with unequal variances was performed between each pair of conditions using

the mt.teststat function. The resulting raw p-values were used for subsequent analyses; adjust-

ment of the p-values by controlling FDR were not used so that results reflect the performance of

the expression algorithm rather than the algorithm for FDR control.

The S-Score and Logit-t algorithms both produce test statistics that are easily converted into

p-values without adjustment. The S-Score values, representing standard deviations from a mean

of zero, were converted to p-values using the standard normal CDF

p-value = 2 (1 −Φ (|S s|))

where S is the S-Score value for the probeset s. The Logit-t is converted to p-values using the

CDF of the t distribution, with the degrees of freedom equal to the total number of arrays minus

2, as recommended by the authors (Lemon et al., 2003).

For multivariate RVM, a mixed effects model was constructed for the transformed and cen-

tered probe-level intensities of each probeset s:

Ycms = µ + βc + bs + εcms m = 1, 2, . . . ,Nm; c = 1, 2, . . . ,Nc (5.1)

For this model,

Ycms =

[
y1 y2 y3 . . . yNp

]′

is the Np × 1 vector of transformed intensities, µ = µJ is the Np × 1 vector of mean intensities for

probeset s, βc = βc J is the Np × 1 vector of effects for the the cth treatment, and

bs =

[
b1 b2 b3 . . . bNp

]′

is the Np × 1 vector of effects for the pth probe of probeset s. These effects are assumed to be
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fixed. The random error term εcms is assumed to have a multivariate normal distribution with an

expectation of 0 and covariance matrix Σ, or εcms ∼ MVN (0,Σ). Thus

E (Ycms) = µ + βc + bs.

A compound symmetric covariance structure was chosen for modeling the relationship among the

probes in a probeset, based on previous work by Archer et al. (2006), so that

Var (εcms) =



σ2 σ2
c σ2

c . . . σ2
c

σ2
c σ2 σ2

c . . . σ2
c

...
...

...
. . .

...

σ2
c σ2

c σ2
c . . . σ2


= Σ

where σ2 is the variance of and σ2
c is the covariance among the individual probes in the probeset.

Since the multivariate RVM method requires that the covariance matrix ε have the same di-

mension for all probesets in an analysis, which in turn requires the transformed intensity vector

Y to have same number of probes within each probeset, a separate analysis was conducted for

each probeset size. For the Affymetrix U133 GeneChip, probeset sizes range from 8 to 20. There

are 21,765 probesets containing 11 probes, 482 probesets containing 16 probes, and 40 probe-

sets containing 20 probes. These groups of probesets were used in the analysis. Although the

sample size for the 40 probesets with 20 probes may be insufficient for accurate estimation of

the hyperparameters, this group was retained as it contains several of the spike-in probes. The

remaining groups of probesets contained 1 to 4 probesets in each group. The sample size for

these groups was deemed too small to yield meaningful results, and these groups were excluded

from the analysis. It is expected that the typical RVM analysis will only include those groups of

probesets that are sufficiently large for adequate estimation of the hyperparameters, with smaller

groups of probesets being excluded. The smaller groups contain probesets used for quality con-

trol that are unlikely to be of interest in most differential expression studies. A brief annotation

of the probesets in these smaller groups is provided in Appendix C.
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Model fitting was performed using the gls function from version 3.1-83 of the nlme package,

available from the Comprehensive R Archive Network (CRAN; http://cran.r-project.org). Maxi-

mum likelihood, rather than restricted maximum likelihood, was used to permit likelihood ratio

tests of the fixed treatment effects (see Pinheiro and Bates, 2000, p. 83). As the gls function

does not allow for multivariate response variables, the model in Equation (5.1) was modified

slightly by “stacking” the responses for each probeset s into a single
(
Nc · Nm · Np

)
× 1 vector

and introducing additional indicator variables denoting membership in each array and treatment

(see http://www.cmm.bris.ac.uk/learning-training/multilevel-m-software/reviewr.pdf for a gen-

eral discussion of this issue in R). Using a reference cell model with the first level of treatment and

probe effects as the reference level (which is the default in R), the fixed terms in Equation (5.1)

may be combined as

β =

[
µ β2 β3 . . . βNc b2 b3 . . . bNp

]′
.

Equation (5.1) then may formulated as the multivariate model

Ys = Xβ + εs (5.2)

where X is an
(
Np + Nc − 1

)
× 1 matrix of indicator variables for the fixed effects, and Y is the

matrix of intensity values formed by concatenating the intensity vectors Ycms as

Ys =

[
Y11s Y21s . . . Yc1s . . . Ycms

]
.

The random error matrix εs may be similarly formed as

εs =

[
ε11s ε21s . . . εc1s . . . εcms

]
. (5.3)

Then E (εs) = 0, where in this case the matrix 0 is an Np × NmNc matrix.

The multivariate model in Equation (5.2) is converted to a “univariate” model using the vec

http://cran.r-project.org
http://www.cmm.bris.ac.uk/learning-training/multilevel-m-software/reviewr.pdf
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operator and Kronecker products, as described in Searle (1978) and Henderson and Searle (1979).

The stacked “univariate” model is then

vec (Ys) = vec (Xβ + εs)

= vec (Xβ) + vec (εs) .

Applying Equation (4.7), this becomes

vec (Ys) = (I ⊗ X) vec (β) + vec (εs) . (5.4)

Since E (vec (εs)) = vec (E (εs)),

E (vec (εs)) = 0

and

E (vec (Ys)) = (I ⊗ X) vec (β) ,

where 0 is an NpNmNc × 1 column vector. The term vec (εs) may be partitioned as

vec (εs) =



ε11s

ε21s

ε31s

...

εc1s

...

εcms



. (5.5)
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With the partitioning given in Equation (5.5), the formula for var (vec (εs)) is

var (vec (εs)) =



var (ε11s) cov (ε11s, ε21s) cov (ε11s, ε31s) . . . cov (ε11s, εcms)

cov (ε21s, ε11s) var (ε21s) cov (ε21s, ε31s) . . . cov (ε21s, εcms)

cov (ε31s, ε11s) cov (ε31s, ε21s) var (ε31s) . . . cov (ε31s, εcms)
...

...
...

. . .
...

cov (εcms, ε11s) cov (εcms, ε21s) cov (εcms, ε31s) . . . var (εcms)



=



Σ 0 0 . . . 0

0 Σ 0 . . . 0

0 0 Σ . . . 0
...

...
...

. . .
...

0 0 0 . . . Σ


, (5.6)

or, more compactly, var (vec (εs)) = Σ ⊗ Imc = var (vec (Ys)). The variable Ys is said to have a

matrix variate normal distribution (Dawid, 1981), denoted in this case as Y ∼ NNp,mc (Xβ,Σ ⊗ Imc).

After fitting the model in Equation (5.4) using the nlme package, the residuals from this anal-

ysis were then used to estimate the parameters a and B of the Wishart prior, as given in Equa-

tion (4.62). Parameter estimates were found using numerical optimization as implemented in the

optim function in the stats package. The optim function minimizes a specified function using an

implementation of the Nelder-Mead simplex algorithm (Nelder and Mead, 1965), which is rela-

tively robust to discontinuities compared to the Newton-Raphson algorithm and does not require

a gradient for the function being optimized. After obtaining estimates for a and B, revised like-

lihood ratio test statistics were computed on a probeset-by-probeset basis using Equation (4.48).

The p-values were obtained from the χ2 distribution with 1 degree of freedom using -2 times the

logarithm of the likelihood ratio test statistic.

The analyses differed between the GeneLogic Dilution dataset and the remaining datasets be-

cause of the differing nature of the experiments. For the GeneLogic Dilution dataset, all probesets

on a chip were spiked in at the same concentration, so that the effects of concentration on the de-
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tection of differential expression could only be examined across chips. The primary measure of

performance was the sensitivity and specificity of each of the five algorithms. Higher values of

sensitivity and specificity would indicate better performance of a particular method. To calculate

these two quantities, it was necessary to establish cutoffs for declaring probesets differentially

expressed. For multivariate RVM, RMA, and mmgMOS, a cutoff value of p < 0.001 was used,

as suggested by Simon et al. (2002). A cutoff value of 3.29 was used for the absolute values

of the S-Score, corresponding to greater than 3.29 standard deviations of change in intensity or

p < 0.001. This is slightly higher than the previously recommended cutoff of 3, which corre-

sponds to p < 0.003. For Logit-t, the t-test value corresponding to p < 0.001 was used as the

cutoff value. This is slightly lower than the cutoff of p < 0.01 recommended by the authors

(Lemon et al., 2003). The use of these cutoff values for the S-Score and Logit-t is intended to

provide uniformity across methods, so that differences in performance are not due to differences

in cutoff values. Sensitivity and specificity were tabulated for each method based on the appro-

priate cutoff values. This was supplemented with plots of the S-scores and of multivariate RVM

versus each of the three remaining algorithms to assess the comparative ability of each algorithm

to clearly separate the spike-in clones from the remaining probe sets.

A different approach was used for the Latin Square and Golden Spike datasets, which con-

tained varying concentrations of spike-in transcripts on each chip. Probe sets were rank ordered

based on p-values obtained from each algorithm, using the rank function in R. Rankings from

each algorithm were compared to the true underlying fold-change values of the spike-in clones.

The true underlying fold-change ranks were determined using the concentration of the spike-in

clones (Tables 2.2, 5.2, 5.4, 5.5, and 5.6) for the two conditions being compared. The proportion

of spike-ins ranked less than or equal to the total number of spike-ins for the dataset was calcu-

lated, and the Cochran-Mantel-Hanzel test used to compare these proportions across all chips.

This validation procedure is similar to the procedure for validation of the original S-Score using

spike-in data (Kennedy et al., 2006a).
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5.4 Results

5.4.1 Quality Assessment

A subset of the quantile-quantile plots of the MAS5 intensity values for the GeneLogic Dilution

dataset are depicted in Figure 5.1, with the full set of 26 plots in Appendix B. These plots

generally show the assumption of linearity is reasonable; that is, the intensities of the spike-in

probes are from a single underlying distribution. Two chips have a single probe falling outside

of the 95% confidence bands of the quantile-quantile plot. With only two outliers among 26

hybridizations of 10 probes each, the quality of the Dilution dataset was deemed adequate, and

this dataset was used in subsequent analyses.

Subsets of the linearity plots of the MAS5 intensity values for the Genelogic AML and Tonsil

Latin Square datasets are shown in Figures 5.2 and 5.3, respectively, with the full set of plots

in Appendix B. As evident from these plots, there are some problems with the assumption of

linearity for almost all chips in the two datasets; that is, the intensities of the spike-in probes do

not increase linearly with increases in concentration, as would be expected. The visual results

are confirmed by the linear regression of intensity on concentration. The R2 values range from

0.01 to 0.98 (mean = 0.61, median = 0.74) for the AML dataset and from 0.31 to 0.99 (mean =

0.79, median = 0.92) for the Tonsil dataset. The large number of chips violating the assumption

of linearity may indicate potential problems with the quality of these datasets, and both were

excluded from further analyses.

Subsets of the linearity plots for the Affymetrix U95 and U133 Latin Square datasets are show

in Figures 5.4 and 5.5, respectively, with the full set of plots in Appendix B. As evident from these

plots, the assumption of linearity is reasonable for almost all chips in the two datasets. The results

of the linear regression showed similar results. The R2 values range from 0.33 to 0.91 (mean =

0.74, median = 0.77) for the U95 Latin Square dataset. The R2 values for the U133 Latin Square

dataset ranged from 0.79 to 0.96 (mean = 0.88, median = 0.88). The lack of fit test for the U133

dataset was significant, p < 0.01. This indicates that intensities at the same concentration level
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Figure 5.1: GeneLogic Dilution Quality. Plots of the computed MAS5 intensity values versus
theoretical normal quantiles for a subset of chips. All intensity values are scaled to give a median
intensity value of 100 for each chip.



www.manaraa.com

180

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●●
●
●●●

●

●

●

●●

●●
●

●●

0 20 40 60 80 100

0
40

00
80

00

Experiment 1

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(a)

●

●

●

●● ●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

0 20 40 60 80 100

0
40

00
80

00

Experiment 2

Concentration

In
te

ns
ity

●

●

Replicate 1
Replicate 2

(b)

●

●

●

●

●
●

●●
●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

0 20 40 60 80 100

0
40

00
80

00

Experiment 3

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(c)

●

●

●

●

●

●

●●
●

●

●●

●

●

● ●●

●
●

●

●

●●

●

●

● ●●

●
●

●

●

●

0 20 40 60 80 100

0
40

00
80

00

Experiment 4

Concentration

In
te

ns
ity

●

●

●

Replicate 1
Replicate 2
Replicate 3

(d)

Figure 5.2: GeneLogic AML Latin Square Quality. Plots of the computed MAS5 intensity values
versus concentration for a subset of chips. High-quality chips would be expected to show a linear
increase in intensity as concentration increases. All intensity values are scaled to give a median
intensity value of 100 for each chip.
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Figure 5.3: GeneLogic Tonsil Latin Square Quality. Plots of the computed MAS5 intensity values
versus concentration for a subset of chips. High-quality chips would be expected to show a linear
increase in intensity as concentration increases. All intensity values are scaled to give a median
intensity value of 100 for each chip.
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do not appear to come from a single underlying distribution, as would be expected. Although the

lack of fit test may suggest potential problems with the U133 dataset, it was retained for further

analyses based on the excellent results from the linearity plots. The U95 dataset was also retained,

due to its inclusion in other benchmark studies (Irizarry et al., 2006).

Quantile-quantile plots for the Golden Spike constant arrays and a linearity plot for the spike

arrays are shown in Figure 5.6. As evident from these plots, there are significant deviations from

the expected values, indicating that the intensities for the control chips are not from a single dis-

tribution. Similarly, the linearity plot shows that the probe intensities in the spike arrays do not

increase linearly as a function of concentration, with the R2 values ranging from 0.07 to 0.08. The

lack of fit statistic for the spike arrays was highly significant, p < 0.001, suggesting that inten-

sities at the same concentration level are not from a single underlying distribution as expected.

Finally, results of the data integrity check using indirect mapping of probesets to pool numbers to

concentrations is depicted in Table 5.7. The indirect mapping shows several discrepancies com-

pared to the direct mapping in Table 5.6. One clone in the probeset file (SD01117) did not map

to any pool assignment. There were also several pools (numbers 6, 13, and 14) for which the

number of assigned clones and/or probesets differed between the direct and indirect mappings.

These differences would affect the concentration value of only one probeset (152452 at), but do

indicate potential problems with the quality of the Golden Spike dataset. Based on the results

of the data integrity check, as well as the quantile-quantile and linearity plots, this dataset was

excluded from further analyses.

5.4.2 Statistical Analysis

The results of the analysis of the GeneLogic Dilution dataset are shown in Tables 5.8 through 5.11.

The statistical significance of the comparisons between different algorithms is given in Table 5.12.

Both the multichip S-Score and Logit-T did well in detecting the spike-in probes for all but the

lowest fold change. There were no significant differences in the performance of the two. RMA

fared worse, failing to detect most of the spike-in probes except at the highest fold change. The
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Figure 5.4: Affymetrix U95 Latin Square Quality. Plots of the computed MAS5 intensity values
versus concentration for a subset of chips. High-quality chips would be expected to show a linear
increase in intensity as concentration increases. All intensity values are scaled to give a median
intensity value of 100 for each chip.
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Figure 5.5: Affymetrix U133 Latin Square Quality. Plots of the computed MAS5 intensity values
versus concentration for a subset of chips. High-quality chips would be expected to show a linear
increase in intensity as concentration increases. All intensity values are scaled to give a median
intensity value of 100 for each chip.
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Figure 5.6: Choe Golden Spike Quality. All intensity values are scaled to give a median intensity
value of 100 for each chip.
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Pool Number Number of assigned
number of clones Affymetrix probe sets

1 87 84
2 141 143
3 85 83
4 180 185
5 90 89
6 88 95
7 186 188
8 90 95
9 180 190

10 183 191
13 392 376
14 368 354
15 394 404
16 452 453
17 419 434
18 372 407
19 163 191

Table 5.7: Clone and Pool Assignments for the Choe et al. Golden Spike Dataset Using Indirect
Mappings

results of the multichip S-Score and Logit-T analyses were significantly better than RMA. The

mmgMOS, pooled S-Score, and RVM methods all performed quite poorly, often failing to detect

any of the spike-ins. It should be noted that the analyses of Experiments 10, 13, and 14 using the

RVM method failed to converge in the estimation of the matrix hyperparameter. Implications of

nonconvergence on these results are discussed in the next chapter.

The results of the analysis for the Affymetrix U95 Latin Square dataset are shown in Ta-

ble 5.13. The statistical significance of the comparisons between different algorithms is given in

Table 5.14. The performance of the multichip S-Score was quite favorable, being significantly

better than mmgMOS and RMA and comparable to Logit-T. For four experiments (numbers 1, 2,

3, and 11), the Logit-T detected a slightly higher number of spike-in probes than the multichip

S-Score. For four other experiments (numbers 9, 16, 17, and 18) the multichip S-Score detected

a slightly higher number of spike-in probes than the Logit-T. The pooled S-Score also showed

significantly better results than mmgMOS and RMA. However, both the multichip S-Score and
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Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

10 0 0 5 0 0 0
11 9 2 10 0 1 0
12 10 0 10 0 0 0
13 10 0 9 0 3 0
14 10 0 10 0 9 2

Table 5.8: Number of True Positives in Analysis of the GeneLogic Dilution Dataset. All com-
parisons are made using Experiment 9 as the baseline chip. Values are the number true positives,
i.e. the number of spike-in probes ranked in the top 10 according to the test statistic generated
by each algorithm. The maximum number of spike-in probes that could be detected is 10. Note
that analyses of Experiments 10, 13, and 14 using RVM had lack of convergence in estimating
the matrix hyperparameter.

Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

10 410 24 1 1 54 0
11 0 2 2 1 3 0
12 2 3 5 1 1 0
13 82 22 1 1 12 0
14 4 3 5 1 6 0

Table 5.9: Number of False Positives in Analysis of the GeneLogic Dilution Dataset. All compar-
isons are made using Experiment 9 as the baseline chip. Values are the number false positives, i.e.
the number of non-spike-in probes ranked in the top 10 according to the test statistic generated
by each algorithm. The maximum number of false positives is 12580 for the RVM method and
12616 for all other methods.

Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

10 12206 12592 12615 12615 12562 12580
11 12616 12614 12614 12615 12613 12580
12 12614 12613 12611 12615 12615 12580
13 12534 12594 12615 12615 12604 12580
14 12612 12613 12611 12615 12610 12580

Table 5.10: Number of True Negatives in Analysis of the GeneLogic Dilution Dataset. All com-
parisons are made using Experiment 9 as the baseline chip. Values are the number true negatives,
i.e. the number of non-spike-in probes not ranked in the top 10 according to the test statistic
generated by each algorithm. The maximum number of true negatives is is 12580 for the RVM
method and 12616 for all other methods.
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Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

10 10 10 5 10 10 10
11 1 8 0 10 9 10
12 0 10 0 10 10 10
13 0 10 1 10 7 10
14 0 10 0 10 1 8

Table 5.11: Number of False Negatives in Analysis of the GeneLogic Dilution Dataset. All
comparisons are made using Experiment 9 as the baseline chip. Values are the number false
negatives, i.e. the number of spike-in probes not ranked in the top 10 according to the test statistic
generated by each algorithm. The maximum number of false negatives is 10.

Algorithm
Multichip Pooled

Algorithm Logit-T mmgMOS S-Score S-Score RMA RVM
Multichip 2.690 67.955 — 74.116 43.959 67.955

S-Score 0 .101 < 0.001 — < 0.001 < 0.001 < 0.001
Pooled 68.762 0.527 — — 16.189 0.528

S-Score < 0.001 0.468 — — < 0.001 0.468
RVM 62.339 0.260 — — 11.243 —

< 0.001 0.610 — — < 0.001 —

Table 5.12: Statistical Significance for True Positives the GeneLogic Dilution Analysis. The first
row of each pair is the Cochran-Mantal-Haenzel test statistic, and the second row is the p-value
obtained using the χ2

1 distribution to determine significance.
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Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

2 9 2 8 7 4 0
3 10 0 9 7 3 0
4 12 6 11 10 11 0
5 12 10 12 9 10 0
6 12 10 12 12 10 0
7 13 11 13 12 10 4
8 13 9 13 12 12 1
9 13 9 13 12 10 0

10 12 8 13 9 11 0
11 12 8 12 12 11 1
12 11 7 10 7 6 0
13 10 5 10 10 7 0
13 10 6 10 8 6 0
13 10 4 10 8 7 0
13 10 5 10 8 8 0
14 5 2 9 6 1 0
14 7 2 9 7 1 0
14 7 2 9 6 4 2
14 8 4 8 8 5 1

Table 5.13: Statistical Analysis of the Affymetrix U95 Latin Square Dataset. All comparisons are
made using Experiment 1 as the baseline chip, and Experiments 13 and 14 contain four technical
replicates each. Values are the number of spike-in probes ranked in the top 14 according to the
test statistic generated by each algorithm. The maximum number of spike-in probes that could be
detected is 14. Note that all analyses conducted using RVM had lack of convergence in estimating
the matrix hyperparameter.

Logit-T outperformed the pooled S-Score. Finally, the results obtained using the RVM method

were significantly worse than the other five algorithms. For most of the experiments, the RVM

method failed to detect any of the spike-in probes. However, it must also be noted that there was

a lack of convergence in estimating the matrix hyperparameter for the RVM method with all 18

experiments as well. Implications of nonconvergence on these results are discussed in the next

chapter.

The results of the analysis for the Affymetrix U133 Latin Square dataset are shown in Ta-

ble 5.15. The statistical significance of the comparisons between the different algorithms is given

in Table 5.16. As with the U95 Latin Square analysis, the multichip S-Score and Logit-T were
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Algorithm
Multichip Pooled

Algorithm Logit-T mmgMOS S-Score S-Score RMA RVM
Multichip 0.169 68.623 — 8.405 35.913 283.857

S-Score 0.681 < 0.001 — 0.004 < 0.001 < 0.001
Pooled 5.876 29.134 — — 8.922 216.067

S-Score < 0.015 < 0.001 — — 0.003 < 0.001
RVM 274.490 115.355 — — 161.051 —

< 0.001 < 0.001 — — < 0.001 —

Table 5.14: Statistical Significance for the Affymetrix U95 Latin Square Analysis. The first row of
each pair is the Cochran-Mantal-Haenzel test statistic, and the second row is the p-value obtained
using the χ2

1 distribution to determine significance.

comparable and outperformed the remaining algorithms. The pooled S-Score performed more

poorly than the multichip S-Score and Logit-T. For this analysis, the pooled S-Score was also

inferior to RMA, although it did outperform mmgMOS. The RVM method detected a number of

spike-in probes and was superior to mmgMOS, but still fared poorly compared to the other four

algorithms. However, in several instances, the estimation of the matrix hyperparameter for the

RVM method failed to converge.
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Multichip Pooled
Experiment Logit-T mmgMOS S-Score S-Score RMA RVM

2 52 22 49 41 40 37
3 53 35 55 45 44 44
4 59 39 59 49 54 29
5 61 40 61 55 56 27
6 63 47 63 49 55 42
7 64 52 63 56 55 39
8 64 50 64 57 57 45
9 64 51 64 41 55 45

10 64 48 63 40 51 27
11 60 49 60 38 49 42
12 60 48 58 42 48 46
13 57 38 57 40 45 38
14 52 17 48 34 37 22

Table 5.15: Statistical Analysis of the Affymetrix U133 Latin Square Dataset. All comparisons
are made using Experiment 1 as the baseline chip. Values are the number of spike-in probes
ranked in the top 64 according to the test statistic generated by each algorithm. The maximum
number of spike-in probes that could be detected is 64.

Algorithm
Multichip Pooled

Algorithm Logit-T mmgMOS S-Score S-Score RMA RVM
Multichip 0.587 197.000 — 126.938 67.103 258.651

S-Score 0.443 < 0.001 — < 0.001 < 0.001 < 0.001
Pooled 142.660 7.263 — — 10.998 28.553

S-Score < 0.001 0.007 — — < 0.001 < 0.001
RVM 278.170 7.289 — — 74.329 —

< 0.001 0.007 — — < 0.001 —

Table 5.16: Statistical Significance for the Affymetrix U133 Latin Square Analysis. The first
row of each pair is the Cochran-Mantal-Haenzel test statistic, and the second row is the p-value
obtained using the χ2

1 distribution to determine significance.
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Chapter 6

Discussion

6.1 Overview

This study represents the first analysis of probe-level algorithms using a comprehensive set of

spike-in datasets. Although probe-level analysis has several potential advantages over probeset-

level expression summary algorithms, claims of superiority for probe-level methods must be eval-

uated critically prior to acceptance. Previous studies of probe-level algorithms have several short-

comings that this study attempts to address. First, most studies have relied on datasets for which

the true status of differential expression for each probeset is unknown, so that separation of true

positives from false positives is difficult. Second, the studies that have utilized spike-in datasets

were conducted prior to the development of some of the spike-in datasets available for this study.

These newer datasets incorporate recent advances in microarray design that would be expected

to lead to more accurate results, and would be more comparable to current microarray studies

than analyses conducted a few years ago. Third, previous probe-level studies have not examined

the quality of the datasets that are utilized, which may have a significant effect on the results

obtained. Fourth, few comparisons between probe-level methods have been made, so that the

relative advantages and disadvantages of different methods are not readily apparent.

192
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6.2 Quality of Spike-In Datasets

The first set of significant results from this study concerns the quality of the available spike-in

datasets, which was sufficiently poor to exclude many of the datasets from analyses. The na-

ture of the spike-in experiments precludes the use of many standard tests for quality control for

microarray data. For example, checks for the presence of ribosomal RNA degradation products

are not useful, as these sequences would not be present in the spike-in studies even if significant

RNA degradation had occurred. Similarly, assessment of the signal intensities for “housekeeping”

genes would not be helpful as these sequences were not included in the spike-in sequences. Thus,

while the available spike-in datasets are generally believed to be of good quality, this can be dif-

ficult to verify. Assessment of linearity is possible with spike-in datasets and provide indications

of the quality of the experiments. The GeneLogic AML and Tonsil Latin Square datasets show

significant deviations from the expected linear increase in intensity with increasing concentration,

which is apparent from visual plots and from the low R2 values. Similarly, the spike arrays of the

Golden Spike dataset show significant departures from linearity, both visually and quantitatively.

Such findings might be interpreted as evidence that the assumption of linearity may not hold for

microarray data, particularly at low concentrations. Another interpretation would be that a linear

increase in signal occurs for microarray data, but the slope of the line differs among probesets. If

so, the increase in signal intensity for a given change in concentration that occurs with one probe-

set would not necessarily be the same as the increase in signal intensity that occurs with another

probeset for the same change in concentration, and data for the individual probesets could not be

combined. However, both the Affymetrix U95 and U133 Latin Square datasets show good results

for linearity, which raises concerns that the results for the GeneLogic Latin Square and Golden

Spike datasets represent poor quality in these experiments. The quantile-quantile plots for the

constant arrays of the Golden Spike dataset would represent a check for linearity when all spikes

are present at the same concentration. These plots show that the intensities are not from a single

distribution, which is also a significant violation of the assumption of linearity. Quantile-quantile

plots show that the assumption of linearity is reasonable for the GeneLogic Dilution dataset, al-
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though there are a small number of probes that fall outside of the 95% confidence bands. Finally,

it is concerning that the mappings of probesets to pool numbers could not be reproduced for the

Golden Spike dataset using the published online data, as this may also be an indicator of poor

quality for the experiment. Attempts to clarify these discrepancies with the authors were unsuc-

cessful, so it cannot be established with certainty whether these findings represent errors in the

original experiment or in the analyses from this study.

Taken collectively, the results of the quality assessment and data integrity checks for the spike-

in datasets indicate that significant problems may exist with these datasets. This is of particular

concern as these datasets are often used for establishing the accuracy of algorithms for detecting

differential expression, which is in turn used for making judgments regarding the algorithms to

pursue further. This study demonstrates that although spike-in experiments have shown improve-

ments over time, current datasets may not be adequate for the purpose of algorithm development.

Additional work is clearly needed regarding the design and creation of spike-in datasets to ensure

that the validation of existing and future algorithms is performed properly.

6.3 The S-Score Algorithm

The second set of significant results from this study concerns the nature of probe-level analyses

and how they are conducted. By extending the S-Score algorithm to multichip comparisons and

the RVM algorithm to a multivariate model, this study advances both the theoretical underpin-

nings of probe-level methodology and the practical implementation of suitable analytic methods.

For the S-Score algorithm, one of the chief concerns was that its development was based on

empiric models that were intuitively appealing but not mathematically rigorous. The results of

the current study provide initial results necessary for a more formal derivation of the S-Score

method. The S-Score statistic closely resembles the sum in the Lindeberg-Feller generalization

of the CLT. This would, in turn, predict that the S-Score statistic would approximately follow

a standard normal distribution after appropriate scaling, which was observed by the original au-

thors (Zhang et al., 2002). The convergence of the S-Score statistic would occur regardless of the
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underlying distribution of the signal intensities. This is a potential advantage over other meth-

ods that impose specific distributional assumptions, as the accuracy of the latter statistics may

not hold if the assumptions are violated. If the underlying distribution of the signal intensities is

approximately normal, the convergence of the S-Score statistic would be quite rapid. This would

allow accurate results to be obtained even with small sample sizes, such as comparisons between

two chips, which has also been observed (Kennedy et al., 2006a). The CLT would also predict

that the accuracy of the S-Score would increase as replicate chips were included in the statistic.

This study extends the original R implementation of the S-Score algorithm to include replicate

chips in the two conditions being compared and provides initial results on the performance of the

extended version using spike-in datasets. Overall, the multichip S-Score did quite well, showing

significantly better results than the standard probeset-level method RMA in the analysis of the

Affymetrix Latin Square datasets. The multichip S-Score also did significantly better than the

mmgMOS algorithm, which is a probe-level analysis method that assumes the signal intensities

follow a gamma distribution. As the complex physical properties governing the binding of sam-

ples to probe sequences on oligonucleotide microarrays may not be fully appreciated at present,

it would be quite understandable that a method that does not rely on underlying distributional

assumptions may show superior performance to a method that does, as shown in this study.

However, a critical requirement for the applicability of the CLT to the S-Score statistic is

that the denominator of the S-Score represent a consistent estimator of the variance of the signal

intensities. This has not been established for the original S-Score or, by extension, to the multichip

S-Score. Although the accuracy of the results obtained with these algorithms is encouraging,

it does not constitute a proof. Thus, this study also sought to improve the variance estimate

contained in the S-Score using an adaptation of the LPE algorithm, which was selected as its

assumptions are similar to those of the S-Score. Surprisingly, use of the variance estimator based

on the LPE algorithm led to a degradation in accuracy. The pooled S-Score did outperform RMA

in the analysis of the Affymetrix U95 Latin Square dataset, but its performance was inferior to

RMA for the Affymetrix U133 dataset. The pooled S-Score did not give comparable results to

the multichip S-Score for any of the datasets examined. The poorer performance may be due
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to limitations of the LPE method itself, particularly as applied to probe-level data. The variance

estimate produced by the LPE method is the variance of a group of probes having a similar average

intensity across chips. The upper tail of the distribution of signal intensities, which are often the

signals of interest for differential gene expression studies, tend to be sparsely populated. This

could lead to groups of probes having only a small number of members and in turn to a potentially

inaccurate estimate of the true variance for the groups of probes, especially if outliers are present.

The LPE algorithm attempts to correct the problem by requiring a minimum number of probes

within each group. However, with the sparseness of the upper tails, this requirement could lead to

probes with very different average intensities begin placed in the same group, which could inflate

the variance estimate. Thus, the LPE method may produce inflated variance estimates for the

probes with high intensity values. If such probes are likely to represent genes showing differential

expression, the inaccuracies in the variance estimates would lead to excessively small S-Scores,

making the detection of differential expression more difficult. Exploration of other methods for

estimating the probe-level variances are warranted to determine if the inflated variance estimates

can be eliminated and the performance of the pooled S-Score improved.

Taken together, these results provide a stronger theoretical background for the S-Score by

demonstrating the similarity of the S-Score formula to the CLT. These results do remain limited

by the fact that the variance estimate used in the calculation of the S-Score has not been estab-

lished as a proper variance. Application of the multichip S-Score to spike-in dataset standards

show excellent results, which is encouraging. The use of the LPE method to derive a more math-

ematically plausible variance estimate actually leads to poorer performance. This may be due to

problems with the implementation of the LPE method or may reflect the accuracy of the S-Score

variance estimator over other estimators.

6.4 The Random Variance Model

In contrast to the S-Score, the RVM method has a firm mathematical foundation by utilizing

a general linear model framework for comparing conditions and assuming an inverse gamma
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distribution for the error terms to achieve greater accuracy of the test statistics. However, it has

only been developed as a probeset-level model, which may not have the same level of accuracy

achieved by a probe-level model such as the S-Score. This study extends the RVM method to

probe-level data by adopting a multivariate model with an inverse Wishart distribution for the

error terms. The inverse Wishart is frequently viewed as a multivariate analogue of the gamma

distribution. The inverse Wishart is also the prior of choice for multivariate Bayesian analysis,

similar to the gamma for the univariate Bayesian model. This study provides two new proofs that

give the distribution of the modified likelihood ratio test under the multivariate RVM assumptions

and provide a method for estimating the hyperparameters used in the multivariate RVM method.

As originally formulated in this study, the multivariate RVM method requires that the sam-

ple variance-covariance matrix be a full rank, positive definite matrix. In the RVM method, this

would occur with probability 1 if and only if the number of chips minus the number of condi-

tions exceeds the number of probes in a probeset for a given Affymetrix chip type. Although

studies using Affymetrix GeneChips are increasing in size, the large number of chips required

by multivariate RVM with a nonsingular variance-covariance matrix remains unattainable for a

large number of experiments. Accordingly, this study incorporates recent developments in singu-

lar multivariate distribution theory to derive the RVM method for the case of a singular sample

variance-covariance matrix, although the matrix hyperparameter is still assumed to be of full

rank. Two new proofs are given for the distribution of the modified likelihood ratio test under the

singular multivariate RVM method as well as a method for estimating the hyperparameters. The

relationship between the singular and nonsingular RVM formulae is also formally established, so

that sets of computational routines specific for the singular and nonsingular cases can be devel-

oped for software implementations.

The assumption that the matrix hyperparameter B for the RVM method is of full rank, which

implies that the scalar hyperparameter a is greater than or equal to the number of probes in a

probeset, is required in the computation of the Jacobian of the transformations used in the multi-

variate F and beta distributions. The exact implications of this assumption on the RVM method

are not clear at this time. The matrix hyperparameter B, like the population covariance matrix Σ,
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is an unknown parameter; thus, its rank is unknown as well. Furthermore, although a consistent

estimator of B may be obtained using the sample data in the singular case, the latter does not

necessarily provide information about the rank of the former (Srivastava and von Rosen, 2002).

Thus, it is difficult to determine if violations of the assumption that the matrix hyperparameter is

of full rank occur. It should be noted that the current software implementation does restrict the

hyperparameter a to be greater than or equal to the number of probes in a probeset, so that the pre-

conditions on B are fulfilled. The estimates of the hyperparameters will still have the maximum

likelihood given the sample data, subject to the constraint on a, and thus represent reasonable

values for use in the multivariate RVM algorithm. However, as the optimization routines consis-

tently find the value of a on this boundary, future studies deriving formulae for the RVM method

when the matrix hyperparameter B is less than full rank seem warranted. Much of the theoretical

research on singular multivariate distributions is quite recent, so that such applications of singular

multivariate distributions must await further development of theory.

Given its theoretical rigor, and the favorable performance of the univariate RVM, the practical

results of the multivariate RVM are disappointing. The multivariate RVM was consistently poorer

than the multichip S-Score and Logit-T, which were the best performers. The multivariate RVM

was also consistently poorer than the pooled S-Score and RVM, although the differences were

less dramatic. It did outperform mmgMOS, though only on certain chips. Thus, the use of the

multivariate RVM often led to the worst results of the six class comparison algorithms chosen. It

is of course possible that these data indicate the RVM methodology is inappropriate for modeling

the intensity data of Affymetrix GeneChips and making inferences from the constructed model.

However, several other possible errors must be considered, many of which may be amenable to

improvement in future research.

The first consideration must be whether the model for the probe-level intensities given in

Equation (5.4) is correct. The residuals from this model are used in the construction of the like-

lihood ratio test in Equation (4.48) for hypothesis testing. The residuals are also used in estimat-

ing the hyperparameters through the RVM equation given in Equation (4.68) for the nonsingu-

lar case or Equation (4.75) for the singular case. Thus, misspecification of the intensity model
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in Equation (5.4) may have tremendous impact on which genes are declared differentially or

non-differentially expressed. The proposed intensity model, which incorporates fixed probe-level

and treatment-level effects, appears reasonable from both a biological and statistical perspective.

However, it might be argued that additional effects may be required for an adequate model, and

that some effects might be represented better by random rather than fixed effects. As an example,

there may be variation in the signal intensities due to the individual chip that is independent of

both the treatment and probe effects. This would lead to the inclusion of a chip-level effect in the

model of Equation (5.4). Such a chip-level effect would be appropriately modeled as a random

effect, as the chips used in an experiment constitute a random sample of chips drawn from the

population of chips that could have been selected. In the present work, consideration was given to

the inclusion of a chip-level effect as well as a probe-level effect, but this approach was ultimately

rejected due to limitations of the nlme package in fitting the model. As the probe effect is gener-

ally a greater source of variation than the chip effect in microarray experiments, the former was

retained in constructing the model. The inclusion of other effects, such as percent GC content,

may also be warranted but were not analyzed in the present work.

The hazards of underfitting and overfitting in general linear models are well-known in the

case of fixed effects (see, for example, Myers, 1990, pp. 112-114). The effects of model mis-

specification on the RVM method have not been investigated to date, but are conjectured to lead

to problems similar to those in the GLM. In underfitting, important predictor variables have been

omitted from the model, and the variation due to these omitted variables is incorporated into

the residual variance estimate. Depending on the nature of these predictors, the residuals could

become significantly biased compared to their true values, although their variance remains un-

changed. In the RVM method, the biased residuals would be expected to lead to inaccuracies in

the likelihood ratio test, as it does in the GLM. The biased residuals may have additional adverse

impact by affecting the estimate for the matrix hyperparameter B−1, which is also used in the

calculation of the likelihood ratio test. In overfitting, predictor variables of marginal importance

are included in the model. This leads to variance inflation, in which the estimates of the model

variance are excessively large compared to their true values. In the RVM method, this variance
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inflation would be expected to lead to wider confidence intervals for significance tests, difficulty

in declaring genes to be differentially expressed, and larger numbers of false negatives.

A second consideration is the choice of the covariance structure used for the matrix hyper-

parameter B−1, which is in turn reflected in the structure of the covariance matrix Σ−1. Based

on the work of Le et al. (1998), it appears that some structuring of the matrix hyperparameter

is necessary to reduce the number of estimated variance components and avoid problems with

identifiability. The compound symmetric structure, in which each of the different probes are as-

sumed to have the same correlation, was chosen based on previous work of Archer et al. (2006)

with pixel-level intensity data. In their work, the use of an first-order autoregressive structure, in

which the correlation between different probes decreases with increasing distance, did not offer

any significant advantages over the compound symmetric structure; other structures were not in-

vestigated. However, they note that this may reflect problems with distance metrics rather than

the lack of advantage for more complex structures.

A third consideration is the choice of distribution for the variances in the RVM method; for

the present work, the variance-covariance matrices are assumed to be distributed according to an

inverted Wishart distribution. This is a logical choice as the inverted Wishart is the conjugate prior

for the Wishart in Bayesian analysis. Furthermore, the inverted Wishart is the multivariate ana-

logue of the inverted gamma distribution, which was used successfully in the development and

validation of the univariate RVM. The inverted Wishart also offers computational convenience

in the manipulation of the joint likelihood of the intensity measurements and their variance-

covariance matrices, which is essential for the derivation of the RVM. Nevertheless, the form

of the distribution for the variance-covariance matrices was chosen based on theoretical assump-

tions, and it is possible that other choices might result in a better fit. Further investigation of the

effects of different distributional assumptions may be pursued in future work.

A fourth consideration is the model fitting method used for obtaining the estimates of the

hyperparameters for the RVM method. In the present work, three parameters were varied to ob-

tain empirical maximum likelihood estimates: the degrees of freedom a, the variance σ2, and the

covariance σ2
c . The variance σ2 constitutes the diagonal elements of the matrix hyperparameter
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B−1, while the covariance σ2
c constitutes the off-diagonal elements. These three parameters were

allowed to vary subject to the constraints a ≥ p and σ2, σ2
c > 0. However, this is method of

optimization is problematic, as many of the possible combinations of σ2 and σ2
c under these con-

straints lead to a matrix B−1 that is not positive definite and thus not valid for the inverted Wishart

distribution. The likelihood maximization routine does remove matrix hyperparameters that are

not positive definite from consideration, but this creates multiple discontinuities in the likelihood

function. The Nelder-Mead simplex algorithm used in the optim function is a derivative-free

search method and relatively more robust to such discontinuities than other algorithms such as

the Newton-Raphson. However, the number of discontinuities in the likelihood function still may

lead to nonconvergence or convergence to a nonoptimal solution, even with the Nelder-Mead al-

gorithm. Even if the optimization routine reports that convergence was achieved, the number of

discontinuities may lead to convergence to a nonoptimal solution.

A more proper maximum likelihood estimation for B−1 would factor the matrix hyperpa-

rameter using the Cholesky or similar decomposition to produce a matrix where the individual

elements may assume any values in a specified range with no discontinuities. These individual

elements would then be allowed to vary over their range to locate a maximum likelihood estimate

for B−1 using an optimization routine. Such an approach is more acceptable theoretically than

the method used in the present work, but in practicality much more difficult to implement. The

simple approach of allowing all of the individual elements within the decomposition matrix to

vary ignores the fact that these elements are not independent due to the imposition of structure on

the matrix B−1. Furthermore, the number of variables being optimized makes such an approach

infeasible with current software. For example, using the Cholesky decomposition would produce

a lower triangular matrix, so that p(p+1)
2 elements would need to be optimized individually. This

would quickly overwhelm the capabilities of the optim function, which can optimize up to 20

variables simultaneously; other software packages have similar or greater restrictions. The more

rigorous approach is to determine the dependencies among the individual elements of the decom-

position matrix. Since, under compound symmetry, only two variables are needed for complete

specification of B−1, only two variables (though in a different form) would be needed to specify
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the elements of the decomposition matrix. The compound symmetry or similar structure would

be well within the capabilities of current optimization software. However, the computation of

the decomposition matrix based on the structure of B−1 is quite difficult to implement and has

not been addressed to date in the literature. Thus, improvements in the optimization methodol-

ogy, while promising, will require considerable time for the development of the relevant matrix

formulae and construction of dedicated software.

A fifth and final consideration is the singularity of the covariance matrix used in the RVM

for the spike-in datasets. This has the effect of restricting the subspace for the covariance matrix

compared to the nonsingular case and reducing the amount of information contained in the sam-

ple. Thus, it is possible that the sample does not contain sufficient information for estimation of

the population parameters, which may be accentuated in the singular case. If so, the performance

of the RVM in the nonsingular case may be superior to other methods, even though the RVM in

the singular case is not. Such a conjecture is interesting but cannot be properly evaluated with

available spike-in datasets. All of the current spike-in datasets, as reviewed in this work, do not

have an adequate number of chips to permit assessment of the nonsingular RVM. However, as

research on standards for evaluation of microarray data analysis methods continues, it is likely

that larger spike-in datasets will become available in the future. Verifying the performance of the

nonsingular RVM should be a high priority for future research, as this may clarify the reasons for

the singular RVM.

Taken collectively, these results demonstrate that the univariate RVM method can be success-

fully generalized to a multivariate one. Using multivariate distribution theory, new theorems are

proven for the likelihood ratio test under the RVM assumptions, as well as the distribution of

the modified sums of squares. Recent work on singular multivariate distributions are also in-

corporated to address small sample sizes, leading to theorems for a singular multivariate RVM.

Application of the singular multivariate RVM to spike-in dataset standards, unfortunately, leads

to poor results compared to other available class comparison methods. This may reflect problems

with the implementation of the RVM method rather than deficiencies in the underlying model.
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Future Research

This study represents an initial contribution to the rapidly growing field of multivariate statistics

and microarray data analysis. As such, part of the goal of this study is to develop lines of future

research that will be pursued in later studies, which will be detailed in this section. Future work

will focus on further refinements to the multivariate extensions of the S-Score and the RVM

method, both of which show promise. The unexpected collateral findings for the quality of spike-

in data will also be an important topic for future exploration.

7.1 Spike-In Datasets

Proper evaluation of algorithms for detecting differential expression in microarray experiments

requires assessment using standardized datasets. The development of spike-in datasets represents

a significant advancement in this assessment, as the differentially expressed genes are known and

can be compared to the output of different algorithms. However, this study demonstrates that

problems in quality occur with all of the presently available spike-in datasets. This is particularly

true for the first spike-in datasets created. The quality has improved with later datasets, yet none

could be considered entirely satisfactory. Additional work in the development of spike-in data

will be essential for the development of microarray data analysis, as accurate comparisons among

algorithms is not possible without a known standard for measuring differential expression.

An obvious avenue for future research is the creation of additional spike-in datasets. Such

datasets would be expected to show improved quality due to refinements in chip design, hybridiza-

203
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tion techniques, and analytical methods that have occurred since earlier spike-in experiments were

performed. Newer datasets might also be larger than current ones, allowing the evaluation of mul-

tivariate analytic techniques without resorting to singular distributions. The creation of additional

datasets is very feasible from a technical perspective, requiring that known RNA samples be

titrated to specific concentrations, hybridized under strictly controlled conditions, and analyzed

to produce the corresponding electronic data. Yet such experiments can be difficult to justify,

as they represent a considerable investment of time and resources that may offer little immedi-

ate reward to the individuals and laboratories who undertake them. The promulgation of results

such as those of this study, which demonstrate the deficiencies of current datasets, will likely be

necessary to ensure that the creation of more spike-in datasets will be undertaken.

A promising alternative to spike-in datasets is the creation of RNA titration series for vali-

dating algorithms to detect differential gene expression. The development of titration series is

newer than the development of spike-ins, but some datasets have begun to appear in the liter-

ature (Thompson et al., 2005) and as part of the MicroArray Quality Control (MAQC) project

(Shi et al., 2006). Under this approach, two or more samples from different tissues are mixed

together in a series of fixed ratios. In contrast to the spike-in datasets, the absolute levels of gene

expression in the samples are not known, but the relative gene expression changes can still be

determined based on the mixing ratios. Knowledge of these relative differences would be suf-

ficient for assessing the performance of algorithms. Such experiments would be advantageous,

as the number of differentially expressed genes would be larger than current spike-in datasets

Such experiments may also be simpler to execute from a technical perspective, as the synthesis of

spike-in clones is not necessary, but the requirements of time and resources may still make them

difficult to justify.

Yet another alternative to spike-in datasets is the creation of RNA titration series in silico

rather than in vitro. Under this approach, two or more samples from different tissues would still

be combined in a series of fixed ratios, but mixing would be done at the level of the intensities

from *.CEL files rather than at the level of extracted RNA solutions. An in silico titration would

be quite promising, as the time and resource requirements for the creation of datasets would be
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greatly reduced. It would also allow datasets to be expanded at a later date, which is not possible

with current spike-in data. However, a greater technical investment would be needed for in silico

than in vitro titration. The latter type of dataset would still need to be created to validate the

results of the former, demonstrating that the two methods of titration lead to similar results. Such

comparisons would necessitate new developments in equivalence testing, which has traditionally

been applied to univariate data. Research in multivariate equivalence testing has only recently

begun, and appropriate methods of equivalence testing for high-dimensional data have not been

investigated to date.

A final avenue for research involving spike-in datasets is the development of quality control

assessments. Research on this topic is growing rapidly, with a number of techniques being pro-

posed to address this issue. However, as seen in the current study, spike-in datasets present unique

challenges for quality control. The typical microarray experiment has a relatively large proportion

of genes showing expression changes – approximately 10% – with the fold-changes varying over a

wide range. Also, the full complement of cellular mRNA is used in the hybridization. In contrast,

spike-in experiments may involve only a small number of genes, which are present with only

a fixed number of fold-changes. Spike-in experiments may also lack specific RNA sequences,

such as ribosomal RNA and messenger mRNA from “housekeeping” genes that are often used in

quality assessments. The present study uses alternative methods, such as testing the assumption

of linearity of hybridization signal with concentration, as quality measures. These analyses did

demonstrate problems with the quality of existing spike-in datasets, but additional methods may

be necessary. Assuming the continued development of spike-in datasets, these relatively simple

methods may be adequate to detect gross quality defects, but not more subtle indicators of poor

quality that may be present.

7.2 The S-Score Algorithm

The performance of the S-Score algorithm was excellent in the original studies utilizing two-chip

comparisons. The present work extends the S-Score algorithm to incorporate multiple chips by
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averaging the intensity and background measurements of chips by condition. This multichip S-

Score compares quite favorably to other probe- and probeset-level models that are in current use.

Such improvements are to be expected, given the similarity of the S-Score error formulation to

the formulation of the Lindeberg-Feller generalization of the CLT. However, in order for the

S-Score to fulfill the requirements of the CLT, its proxy error variance must be shown to be a

consistent estimator of the true error variance. Demonstrating the consistency of the proxy error

variance, or finding a substitute that performs comparably, constitutes the primary direction for

future research on the S-Score.

The LPE algorithm represents a reasonable alternative to the proxy variance estimator of

the S-Score algorithm. It is mathematically justifiable and in keeping with the intensity-based

variance estimates used by the S-Score algorithm. The original and subsequent reports on the LPE

algorithm also showed favorable results (Jain et al., 2003; Park et al., 2007). The adapted version

of the LPE used in the current work, however, showed only modest ability to detect differentially

expressed genes that was inferior to most of the other algorithms tested. Development of a version

that more closely parallels the original LPE may result in improvements and will be explored

in further work. For example, use of all pairwise comparisons to guarantee that the expected

value of the intensity differences is 0 may offer benefits over the use of the mean intensity across

all chips. Another line of research would be to explore other methods of creating intervals of

adaptive widths in the high intensity region, so that more accurate estimates of the variance for

these probes can be obtained. The tradeoff between potentially high variance estimates due to

small numbers of probes versus potentially high variance estimates due to grouping disparate

high intensity measurements requires further investigation to determine optimal methods.

A second area of research on the S-Score algorithm would be to study alternatives to the LPE

method for obtaining a proxy variance estimate. Many of the intensity-based variance estimates

assume a specific distribution for the variances, as in Sartor et al. (2006), Weng et al. (2006), or Hu

and Wright (2007). Some distribution-free models do exist, but are probeset- rather than probe-

level models. Eaves et al. (2002) used a weighted average of the variance of a probeset across

chips and the mean of the variances for probesets with similar intensities. This includes aspects of
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both the original LPE model and the adapted model used in the present work. Mansourian et al.

(2004) obtain a robust estimate of the variance by dividing the probeset intensities into equal-sized

bins, then computing the median of the variances for the probesets in each bin. Neuhäuser and

Jöckel (2006) use a modified bootstrap as another nonparametric approach. For each gene, the

probeset expression summaries are centered using the mean expression value of the gene across

all chips. These centered expression summaries constitute the sample for obtaining the bootstrap

estimate, with resampling performed at the gene level. Significance is determined with the t test

comparing the original and bootstrap samples. Features of these approaches may be developed

into probe-level implementations for the S-Score algorithm to determine if additional gains over

the pooled S-Score can be obtained.

Finally, several minor improvements in the S-Score algorithm may be pursued in future re-

search. Rewriting the code in a compiled language such as C would result in a significant gain

in speed, particularly in the computation of the SF and SDT parameters that are required by the

SScore function. This would also allow the open source Affymetrix routines for the computa-

tion of the SF and SDT to be incorporated into the code, assuring greater compatibility with the

Affymetrix software. Creation of software routines that compute the S-Scores directly from the

*.CEL files, rather than an object stored in memory, would reduce time and memory requirements

in a manner similar to the justRMA function in the affy package. Such improvements would be

included in future releases of the sscore package through the Bioconductor project.

7.3 The Random Variance Model

The RVM method is based on a sound theoretical foundation in multivariate statistical analysis.

The imposition of a prior distribution for the covariance matrix has long been used in Bayesian

analysis, and translates well to the frequentist approach. However, the practical results of the

multivariate RVM method applied to available spike-in datasets is disappointing. Additional work

is necessary to evaluate the RVM method and determine its usefulness in microarray data analysis.

One of the greatest concerns is that the nonsingular RVM method has not been evaluated,
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due to limitations of current spike-in datasets. Thus it is difficult to ascertain the impact of the

singular multivariate distribution, with its associated data reduction, on the results of the RVM

method. The question of whether the nonsingular RVM method can achieve greater accuracy

than the singular RVM cannot be answered without the development of larger spike-in or other

standard datasets. Such datasets must have the number of chips minus the number of classes

exceed the number of probes per probeset for the sample covariance matrix to be nonsingular;

this would be 7 chips per class for a 2-class comparison involving the human U133 chip, but may

require greater numbers for other chip types. If larger standardized datasets become available

in the future, analysis using the nonsingular RVM method is straightforward, as existing code

will need only slight modification to incorporate the nonsingular rather than singular multivariate

distribution.

Another significant concern is the optimization routine for estimating the hyperparameters for

the prior distribution, subject to the constraint that the matrix hyperparameter B be positive defi-

nite. The accuracy of this estimate affects the value of the likelihood ratio test, used for declaring

genes differentially expressed, so that errors in the estimate can have a great impact on perfor-

mance. Estimation of a positive definite covariance matrix is seen as a difficult problem without

a standard solution (Schwallie, 1985). In many cases, the positive definite constraint is ignored

in the estimation process. This is often unsatisfactory as it frequently leads to negative variance

estimates that lack interpretability. Another option is to perform unconstrained estimation, then

adjust the estimate so that the matrix is positive definite, using algorithms dedicated to this pur-

pose (Hu and Olkin, 1991). This approach is usually unsatisfactory from a statistical perspective

as the estimate is no longer a maximum likelihood estimate, and no longer possesses the desir-

able properties of the MLE. The option used in the current study is to assign an infinite value

to the minus log likelihood (which corresponds to a negative infinite value for the likelihood) for

any estimate that is not positive definite. This guarantees that a positive definite matrix will be

selected for the maximum likelihood estimate, except in the improbable event that all calculated

likelihoods are negative infinite. However, it is possible that assigning infinite values to the minus

log likelihood may sufficiently distort the surface of the likelihood function that the optimization
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routine cannot locate the correct solution. It is difficult to determine whether the optimization

routine converges to an incorrect solution, indicating a need for further research to address the

positive definite constraint.

The best option would be to transform the matrix hyperparameter and address the constraint

within the transformation. Two possibilities for the transformation are the Cholesky decompo-

sition and the matrix exponential function. For the Cholesky, the positive definite matrix B is

written as

B = B∗B∗′,

where B∗ is a lower triangular matrix. The individual elements of B∗ are unconstrained, while still

guaranteeing that B∗ is positive definite. Thus the individual elements of B∗ may be used as the

parameters for the optimization routine to determine the estimate of B. The matrix exponential

B = exp (B+) may be calculated as

exp
(
B+) =

∞∑
i=0

(B+)i

i!
,

where (B+)0 = Ip and

(
B+)i

=

i︷               ︸︸               ︷
B+ · B+ · . . . · B+ .

This is the matrix analogue to the Taylor series expansion for the exponential of the scalar b,

which is given by

exp (b) =

∞∑
i=0

bi

i!
.

If the matrix B+ is real and symmetric, then exp (B+) is positive definite (Chiu et al., 1996). Thus

the individual elements of the lower triangle of B+ may be used as parameters for the optimization

routine without constraint, with exponentiation of the corresponding symmetric matrix to com-
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pute the estimate of B. Both the Cholesky and the matrix exponential would appear suitable for

the RVM method, though using a transformation would increase computational time and com-

plexity. It is also unclear how the pattern of the hyperparameter B would be maintained when

using a transformation.

A related area for further research would be the constraint that the matrix hyperparameter for

the prior distribution be nonsingular. This constraint is a consequence of deriving the Jacobian

of the transformation of Σ̂ to (a − p − 1) B1/2Σ̂B1/2, which is used to estimate the values of a

and B. Existing theorems for calculating this Jacobian require that the matrix B be nonsingular

(Dı́az-Garcı́a and Gutiérrez Jáimez, 1997). Since, under singular RVM, the matrix B serves as a

hyperparameter for the prior of the singular matrix Σ̂, there is no reason to assume that B would be

nonsingular; the constraint is merely a computational convenience. Extending current theorems

regarding the above transformation would require considerable theoretical work to incorporate the

generalized inverse of B into the Jacobian. The development of singular multivariate statistical

theory is currently a rapidly growing topic of research, and the derivation of the Jacobian with

a singular B matrix would be of great theoretical interest. If the accuracy of the singular RVM

method improves with the application of the previously mentioned modifications, the derivation

would be of practical importance as well.

Future work should also investigate the appropriateness of the large-sample χ2 approximation

for determining the significance of the likelihood ratio test statistic in the RVM method. Clearly,

the sample sizes used in the spike-in dataset analysis raise the possibility that the approximation

may not be adequate; a similar situation would arise in many microarray experiments. In the

present study, the implementation of the RVM method does not allow the effects of the large-

sample approximation to be disentangled from other potential sources of poor performance, but

the lines of research detailed above should clarify this issue. If the approximation for the likeli-

hood ratio test proves to be insufficient, potential remedial measures do exist. Ghosh and Sinha

(1980) note that the likelihood ratio test remains valid if a prior distribution is imposed on the

covariance matrix and subsequently integrated out of the likelihood. For the RVM method, this

would transform the likelihood ratio test from the ratio of the maxima of two multivariate normal
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distributions to the ratio of the maxima of two multivariate t distributions. This transformation

may lead to a form of the likelihood ratio test for which an exact distribution is available. Alterna-

tively, Dempster (1958, 1960) suggests abandoning the likelihood ratio test for high-dimensional

data, instead choosing a suitable distance metric and then using the distribution of the data to

develop an associated test of significance. Assuming multivariate normality, the proposed test

statistic becomes the ratio of the trace of the hypothesis sums of squares to the trace of the error

sums of squares, which approximately follows a χ2 distribution. Under the RVM framework,

Dempster’s test would become

Tr
(
ŜS + B−1

)
Tr

(̂̂SS − ŜS
) .

Similar to the likelihood ratio test, Dempster’s test would require that the term Σ−1 be factored

from the term Σ−1
(
(n − k + a) Σ̂

)
to derive the test statistic, which cannot be done. However, the

general approach may still be useful if another suitable distance metric can be found in future

studies.

The final major concern regarding the RVM method is the selection of the multivariate model

for the intensities and their covariances. The current study uses a model for the intensities that

incorporates a treatment effect and a probe effect to explain the observed differences between

experimental groups. The covariance matrix for the intensity measurements is assumed to follow

a compound symmetric structure. These choices are based on previous work on mixed effects

models for intensities (Archer et al., 2006) and current limitations of model-fitting software in

the R programming environment. In future work, additional terms, such as a chip effect, would

be incorporated into the mixed model, and formal statistical tests used to evaluate the degree of

improvement in the model based on the new terms. Implementation of this will largely depend

on further improvements in the R packages for fitting mixed effects models, or the porting of the

RVM method to other statistical programming environments such as SAS IML or Stata. Future

work should also explore alternative covariance structures, such as first-order autoregressive and
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Toeplitz, as choices for the mixed model. Such alternatives did not offer any advantage over

a compound symmetric structure in previous research Archer et al. (2006), but may be yield

different results with the RVM method, particularly if coupled with new distance measures. The

use of structured covariance matrices would appear to be necessary to reduce the number of

parameters sufficiently to allow the maximum likelihood estimate to be computed.

There are also several minor improvements in the RVM method to be pursued in future re-

search. Assuming that the investigations described above lead to improved accuracy of the RVM

test statistic, the p-values that are obtained should be adjusted to control the false discovery rate.

Such a modification would not be difficult to implement, but must account for the small sample

sizes in estimating the null distribution for the FDR. Jain et al. (2005) have proposed the rank

invariant resampling (RIR) method for estimating the null distribution that appears well suited to

such situations.

The computational efficiency of the RVM method may also be improved rather easily. Con-

siderable gains could be achieved by converting the code from the interpreted R language to the

compiled C language. Additional gains might be realized by development of specialized opti-

mization routines for estimating the hyperparameters under the RVM method, rather than using

the general-purpose nlme package. Finally, again assuming that the above research produces a

more accurate RVM test statistic, the method would be developed for release as an R package for

the Bioconductor project.
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Conclusions

The purpose of this project is to expand the knowledge and use of probe-level analysis methods

for Affymetrix GeneChip data by extending two promising models, the S-Score and the Ran-

dom Variance Model. The original S-Score implements probe-level analysis but is limited as it

performs only two-chip comparisons. This project extends S-Score algorithm by allowing com-

parisons among multiple chips. A simple averaging of the chip intensities and variances performs

quite well on spike-in datasets, and appears reasonable based on the Central Limit Theorem. The

difficulty with this approach is that the variance estimate is not well justified theoretically. The

use of alternative variance models, such as the local pooled error algorithm, result in degraded

performance, but other variance models are available and will be pursued in future work.

The RVM method is well justified theoretically, but the original formulation was limited to

probeset-level data. This project extends the RVM method to a multivariate probe-level model,

which is proven mathematically. The performance of the RVM implementation appears inferior to

probeset-level and other probe-level methods, but may well be due to deficiencies in the associated

software rather than the model itself. Several strategies for addressing this problem are proposed

and will be explored in future work.

In summary, this project contributes to the growing research on probe-level analysis by ad-

vancing two previously existing models. Neither is optimal, as one still has theoretical issues and

the other has practical issues that must be addressed. Still, this work shows the potential gains

of probe-level analysis over traditional probeset-level methods, and shows that such work has

a sound theoretical basis using recent developments in the theory of multivariate analysis. It is
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hoped that this project will serve to stimulate further research into this rewarding topic.
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A, 32, 81–88.

Mogensen, J., Nielsen, H. B., Hofmann, G., and Nielsen, J. (2006). Transcription analysis using

high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on

glucose or ethanol. Fungal Genet Biol, 43(8), 593–603.

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New York.

Muirhead, R. J. and Verathaworn, T. (1985). On estimating the latent roots of Σ1Σ
−1
2 . In P. R.

Krishnaiah, editor, Multivariate Analysis, volume VI, pages 431–447. North Holland, Amster-

dam.

Myers, R. H. (1990). Classical and modern regression with applications. PWS-KENT, Boston,

2nd edition.

Nelder, J. A. and Mead, R. (1965). A simplex algorithm for function minimization. Comput J, 7,

308–313.

Neudecker, H. (1968). The Kronecker matrix product and some of its applications in economet-

rics. Stat Neerl, 22, 69–82.

Neudecker, H. (1969). Some theorems on matrix differentiation with special reference to Kro-

necker matrix products. J Am Stat Assoc, 64(327), 953–963.
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A.1 Quality Control Assessment of the Choe et al. Spike-in
Dataset

############################################################

#

# Program Name: ChoeQuality.pl

# Author: Richard Kennedy

# Date: 12/14/2007

#

# Purpose: This program performs quality assessments for

# the Choe et al. Golden Spike dataset.

#

# Description: This program performs quality assessments for

# the Choe et al. Golden Spike dataset in two ways. First,

# the number of clone IDs and probesets assigned to each

# pool number are computed from the dataset provided on the

# authors’ website, which are compared to the table in their

# BMC Bioinformatics article. Second, the probesets are

# mapped to pool numbers, then pool numbers to fold change,

# to give the fold change data for each probeset. These

# fold change data are compared to the fold change data

# for each probeset provided on the authors’ website.

#

############################################################

# Define several hash tables for analyzing the data. The

# hash data structure makes it particularly easy to track

# the assignments using the key value, which corresponds to

# the clone ID or the pool number.

# Create a hash table for the number of clones assigned to

# each pool. Note that, in addition to the numbered pools,

# there are two additional pools (described in the Choe et

# al. article): empty, which are not assigned to any pool

# (these are probesets that were not spiked in); and mixed,

# which are weakly assigned to multiple pools. These are

# identified as such in the authors’ datafiles. The key

# value for the hash table is the pool number, and the

# associated data value is the number of clones, which

# is initialized to 0. The actual number will be calculated

# later.

%CloneCount = (empty => 0,

mixed => 0,



www.manaraa.com

236

1 => 0,

2 => 0,

3 => 0,

4 => 0,

5 => 0,

6 => 0,

7 => 0,

8 => 0,

9 => 0,

10 => 0,

13 => 0,

14 => 0,

15 => 0,

16 => 0,

17 => 0,

18 => 0,

19 => 0);

# Create another hash table for the fold change assigned to

# each pool. These data are obtained from columns 1 and 4

# of Table 1 in the Choe et al. article. The empty clones

# are arbitrarily assigned a concentration of -1 and the

# mixed clones a concentration -2 by the original authors

# for identification. The key value for the hash is the

# pool number, and the associated data value is the fold

# change of the spike (S) relative to control (C).

%PoolFold = (empty => -1,

mixed => -2,

unassigned => -3,

1 => 1.2,

2 => 2,

3 => 1.5,

4 => 2.5,

5 => 1.2,

6 => 3,

7 => 3.5,

8 => 1.5,

9 => 4,

10 => 1.7,

13 => 1,

14 => 1,

15 => 1,

16 => 1,

17 => 1,

18 => 1,
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19 => 1);

# Create a third hash table for the number of probesets

# assigned to each pool. These values are computed from the

# data files at the authors’ website. The values of -1 and

# -2 again represent the empty and mixed clones. The value

# of -3 is used to record any probesets which were not

# assigned to any pool. The key value for the hash table is

# the pool number, and the associated data value is the

# number of probesets.

%ProbesetCount = (empty => 0,

mixed => 0,

unassigned => 0,

1 => 0,

2 => 0,

3 => 0,

4 => 0,

5 => 0,

6 => 0,

7 => 0,

8 => 0,

9 => 0,

10 => 0,

13 => 0,

14 => 0,

15 => 0,

16 => 0,

17 => 0,

18 => 0,

19 => 0);

# Create an empty hash structure for storing the pool number

# assigned to each clone. This will be filled using the

# data file from the authors’ website. The key value for

# the hash table will be the clone ID, and the associated

# data value will be the pool number.

%ClonePool = ();

# Create an empty hash structure for storing the Flybase ID

# number assigned to each clone. This is not used in the

# analysis but is output in the data file for completeness.

# The key value for the hash table will be the clone ID, and

# the associated data value will be the Flybase ID.

%CloneFlybase = ();
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# Create an empty hash structure for storing the gene name

# assigned to each clone. This is not used in the analysis

# but is output in the data file for completeness. The key

# value for the hash table will be the clone ID, and the

# associated data value will be the gene name.

%CloneGene = ();

# Create an empty two-way hash structure (a hash of hashes)

# for identifying the probesets assigned to each pool. The

# first key value of the hash table will be the pool number,

# and the second key value of the hash table will be the

# probeset ID. The associated data value is simply an

# indicator variable set to 1 if the probeset is in the

# specified pool.

%ProbesetPool = ();

# Create a list containing the pool numbers and all possible

# key assignments (pool numbers plus empty and mixed

# categories). These will be used as indices for printing

# the data in the appropriate order (since Perl sorts by the

# ASCII collating sequence rather than numeric).

@PoolIndex =

(’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’10’,’13’,’14’,’15’,

’16’,’17’,’18’,’19’);

@AllIndex =

(’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’10’,’13’,’14’,’15’,

’16’,’17’,’18’,’19’,’empty’,’mixed’);

# Open the data file (from the authors’ website) containing

# the information about each clone. This is stored in

# a .csv file with the rows being the clone and the columns

# being the pool number, clone ID, Flybase ID, and gene

# name in order.

open(CHOE,"<gb-2005-6-2-r16-s8.csv");

# Loop to read the entire data file

while (<CHOE>) {

# Parse each line into fields

chomp $_;
@fields = split(/,/,$_);
$Pool = $fields[0];

$CloneID = $fields[1];

$FlybaseID = $fields[2];
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$Gene = $fields[3];

# Increment the clone ID count for the specified pool number

$CloneCount{$Pool} = $CloneCount{$Pool} + 1;

# Store each data item in the appropriate hash, indexed

# by clone ID for access

$ClonePool{$CloneID} = $Pool;

$CloneFlybase{$CloneID} = $FlybaseID;

$CloneGene{$CloneID} = $Gene;

}

close(CHOE);

# Note that the clone IDs for the empty and mixed categories

# have only the pool and clone ID columns populated. The

# concentration , Flybase ID, and gene data are set to

# arbitrary values so they can be identified later.

$ClonePool{’empty’} = ’empty’;

$CloneFlybase{’empty’} = "";

$CloneGene{’empty’} = "";

$ClonePool{’mixed’} = ’mixed’;

$CloneFlybase{’mixed’} = "";

$CloneGene{’mixed’} = "";

# Print a sorted list of the clone IDs showing the pool

# assignments. This should reproduce column 2 of Table 1

# in the Choe et al. article.

print "Clone assignments to pools\n";
print "--------------------------\n";
print "Pool Number\tNumber of Clones\n";

# Loop through each of the key values, which are the pool

# numbers, and locate the corresponding number of

# clone IDs assigned to it

$TotalCount = 0;

foreach $key (@PoolIndex) {
print $key,"\t\t",$CloneCount{$key},"\n";
$TotalCount = $TotalCount + $CloneCount{$key};

}

print "--------------------------\n";
print "Total\t\t$TotalCount\n\n";

# Open the data file (from the authors’ website) containing

# information about the mapping of the clones to Affymetrix
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# ID numbers. This is a tab-delimited text file with the

# rows being the probeset ID and the columns being the clone

# ID (there can be more than one clone ID per probeset, in

# which case the probeset is listed multiple times), the

# number of probe pairs in the probeset that match the clone

# ID, the fold change for the clone ID, and the fold change

# for the probeset (which is the weighted average of the

# clone ID fold change for probesets matching multiple clone

# IDs).

# Note that the original file on the website contains

# a header which was manually removed prior to running this

# analysis. Also, the original text file on the web does

# not have the .txt extension and, depending on the Perl

# implementation , the end-of-line character may need to be

# changed to the Unix convention (line feed) for this code

# to work.

open(PROBESETMAP ,"<mapping-affy2clones.txt");

# Create an output file showing the fold changes obtained

# in two different manners. This will be a .csv file

# with rows being the probeset ID and the columns being

# the fold change computed directly (as a weighted average

# of the clone ID fold change in the file), the fold change

# computed indirectly (as a weighted average of the fold

# change of the pool to which the clone ID is assigned, which

# is from the previous input file), and the difference between

# the two.

open(OUTFILE,">ChoeMapping.csv");
print OUTFILE "Probe ID,Direct Fold Change,Indirect Fold
Change,Difference\n";

# Initialize an accumulator variable for storing the total

# counts across all pools

$TotalCount = 0;

# Initialize the value of the previous probe read from the

# file to a null value, so that the start can be identified.

# This value is used to track the previous probe so that

# probesets mapping to multiple clone IDs can be

# appropriately processed

$PreviousProbeset = "";

# Loop through the entire input file

while (<PROBESETMAP >) {
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# Increment the total count of the number of probesets

# (which includes duplicates)

$TotalCount = $TotalCount + 1;

# Split the input line into fields

chomp $_;
@fields = split(/\t/,$_);
$ProbesetID = $fields[0];

$CloneID = $fields[1];

$NumProbes = $fields[2];

$CloneFold = $fields[3];

$ProbesetFold = $fields[4];

# If this clone ID does not exist in the previously

# created pool hash, then there is no pool assignment

# for the clone ID, so print an error message.

if (!defined($ClonePool{$CloneID})) {
print "Note: Probeset $ProbesetID is assigned to Clone
ID $CloneID ,\n";

print " but Clone ID $CloneID has no pool

assignment\n";

} else {

# Otherwise , the clone ID does have a pool assignment.

# Get the pool number and add the current probeset ID

# to the list of probesets for this pool.

$Pool = $ClonePool{$CloneID};

$ProbesetPool{$Pool}{$ProbesetID} = 1;

# Check to see if this probeset ID is the same as the

# probeset ID from the previous line. If so, add the

# weighted fold change and the total number of probes

# to the running total.

if ($ProbesetID eq $PreviousProbeset) {
$DirectFold = $DirectFold + $NumProbes * $CloneFold;

$IndirectFold = $IndirectFold + $NumProbes *

$PoolFold{$ClonePool{$CloneID}};

$TotalProbes = $TotalProbes + $NumProbes;

# If this probeset ID is not the same as the probeset ID

# from the previous line, then all of the data for the

# previous probeset has been read in. Compute the fold

# change for the previous probeset and output it to the file

} else {
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# If the previous probeset is not a null string, then this

# is not the start of the file. Compute the fold change for

# the previous probeset by dividing the total by the number

# of probes for both the direct and indirect methods, as

# well as the difference between them.

if ($PreviousProbeset ne "") {
$DirectFold = $DirectFold / $TotalProbes;

$IndirectFold = $IndirectFold / $TotalProbes;

$Difference = abs($DirectFold - $IndirectFold);

# If the difference between the direct and indirect

# computations is not zero (within round-off error), then

# the clone ID has not been assigned the same fold change as

# the pool to which it belongs, so print an error message.

if ($Difference > 1e-3) {
print "Note: Probeset ID $PreviousProbeset
has different fold change\n";

print "for direct vs. indirect
calculations.\n";

print "Direct Fold Change =
$DirectFold\tIndirect Fold Change =

$IndirectFold\n";

}

# Write the data to the output file for all probesets , so

# that it may be reviewed later if desired.

print OUTFILE "$PreviousProbeset ,$DirectFold ,
$IndirectFold ,$Difference\n";

}

# Save the data for the current probeset as the previous

# probeset, in preparation for reading the next line of

# data.

$DirectFold = $NumProbes * $CloneFold;

$IndirectFold = $NumProbes *

$PoolFold{$ClonePool{$CloneID}};

$TotalProbes = $NumProbes;

$PreviousProbeset = $ProbesetID;

}

}

# Increment the count of the number of probesets for this

# pool

$ProbesetCount{$Pool} = $ProbesetCount{$Pool} + 1;

}
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# Note that the last line of the mapping data file has not

# been processed. This sends the last line to the output

# file.

print OUTFILE "$PreviousProbeset ,",$DirectFold/$TotalProbes ,",",
$IndirectFold/$TotalProbes ,",","$Difference\n";

print "\n\n";

close(PROBESETMAP);
close(OUTFILE);

# Print the list of pool numbers and the number of

# Affymetrix probesets assigned to each pool.

print "Probeset assignments to pools\n";
print "-----------------------------\n";
print "Pool Number\tNumber of Probesets\n";

# Loop through the key values, which are the pool numbers,

# and locate the corresponding number of probesets assigned

# to it

foreach $key (@AllIndex) {
print $key,"\t\t",$ProbesetCount{$key},"\n";

}

# Show the total number of probesets across all pools

print "-----------------------------\n";
print "Total\t\t$TotalCount\n\n\n";

# Note that it is possible for a probeset to be assigned to

# a pool more than once if multiple clones in the same pool

# map to the same probeset. This prints a listing of the

# pool numbers and the number of probesets assigned to each

# pool, counting each probeset only once per pool. This

# should reproduce Table 1 in the Choe et al. article.

print "Unique probeset assignments to pools\n";
print "------------------------------------\n";
print "Pool Number\tNumber of Probesets\n";

# Loop through the key values, which are the pool numbers,

# and locate the corresponding data value, which is a hash

# table.

$TotalCount = 0;

for $key (@AllIndex) {

# The second hash table has key values that are the probeset
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# IDs for all probesets assigned to the current pool number.

# These key values are unique, so the number of keys is the

# number of unique probesets assigned to that pool.

@Probesetkeys = keys(%{$ProbesetPool{$key}});
$ProbesetCount = @Probesetkeys;

print $key,"\t\t",$ProbesetCount ,"\n";
$TotalCount = $TotalCount + $ProbesetCount;

}

print "------------------------------------\n";
print "Total\t\t$TotalCount\n\n";
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A.2 Logit-T Analysis of Spike-In Datasets

############################################################

#

# Program Name: logitTAnalysis.R

# Author: Richard Kennedy

# Date: 12/20/2007
#

# Purpose: This program performs an automated analysis on

# several sets of data using the Logit-T program function as

# the primary analysis tool.

#

# Description: This program analyzes three separate

# datasets, the Affymetrix U95 and U133 Latin Square and the

# GeneLogic Dilution data. For each dataset, the

# appropriate data files are read and the logit-T scores

# computed. One data file is created showing the logit-T

# for all of the probesets on the chip, in increasing order

# (or decreasing order of significance); one data file gives

# the number of spike-in probes (from both the original

# Affymetrix list and the expanded list of McGee et al.)

# that are highly ranked; and one data file shows the actual

# rank based on logit-T scores versus the expected rank

# based on the concentration fold-change from the

# spike-in data. Although similar, separate computation

# routines are used for the Affymetrix U133 Latin Square,

# Affymetrix U95 Latin Square, and GeneLogic Dilution

# datasets due to slight differences in the analyses and for

# better readability.

#

############################################################

# Load the affy library. This is a standard library

# available through Bioconductor , which implements the

# functions for reading CEL files

library(affy)

############################################################

#

# This performs an analysis of the Affymetrix U133 spike-in

# data set

#

############################################################
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# These are the filenames , which are stored in order of the

# ASCII collating sequence, as in the directory listing

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")
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# Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

# These are the categories (experiment numbers) to which

# each of the chips belongs

category <- rep(1:14,each=3)

# These are the categories (experiment numbers) for the

# comparisons. By default, the baseline condition will be

# experiment 1. All experiments in the list will be

# compared to the baseline in turn

cat.names <- unique(category[category!=1])

# Create the groupfile for the logit-T program indicating

# which data files to analyze. As per the documentation for

# the logit-T program, the groupfile is a tab-delimited text

# file, with the first column being the CEL file name, the

# second column designating the group membership , and the

# third column being a synonym (abbreviation) for the CEL

# file. An example would be

# 1521a99hpp_av06.CEL A a1a06

# 1521b99hpp_av06.CEL B b1a06

# The first CEL file is 1521a99hpp_av06.CEL , which is part
# of group A. Its synonym, which is the name used in

# printouts , is a1a06. The second CEL file, which is part

# of group B, is 1521b99hpp_av06.CEL and has synonym b1a06.
# The groups A and B will be compared to each other to

# generate logit-T scores.

#

# For this analysis, there are 14 groups, which will be

# labeled A-N. Each group contains 3 CEL files, so group A

# will have synonyms A1, A2, A3, group B synonyms B1, B2,

# B3, and so on.

for (i in (1:13)) {
index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]
group <- c(rep("A",3),rep(LETTERS[i+1],3))
synonym <- paste(rep(c("A",LETTERS[i+1]),each=3),rep(1:
3,2),sep="")

data <- data.frame(small.fnames ,group,synonym)
write.table(data,file=paste("LogitTFoldU133Run",i,
".txt",sep=""),sep="\t",row.names=FALSE,col.names=
FALSE,quote=FALSE)

}
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# These are the names of the spiked-in clones for the

# original 42 probes reported by Affymetrix. These are in

# the order given in the Affymetrix descriptor file included

# with the datasets. Note that there are 3 clones in each

# group of clones spiked in at the same concentration for a

# given experiment (see the Affymetrix descriptor file for

# additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

# These are the concentration data for the clones in each

# experiment. These are ordered across columns by clone

# group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

# These are the group numbers for each of the spiked-in

# clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names
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# These are the names of the spiked-in clones for the

# expanded set of 64 probes reported by McGee et al. These

# are in the order given in their article and the

# supplemental files. Note that there are no longer 3

# clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

# These are the group numbers for each of the spiked-in

# clones given in the expanded.spike variable. Positive

# numbers denote the original 42 clones reported by

# Affymetrix , negative numbers the supplemental 22 clones

# given by McGee et al., to facilitate separate analyses if

# necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

# These are the number of probes in the expanded and

# original list of spiked-in clones.

num.large <- 64
num.small <- 42
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# loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

# Get the subset of the CEL files used in this analysis

index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]

# Since the logit-T program is a compiled C program, the

# command-line text must be generated and executed via the

# system command. As per the documentation for the logit-T

# program, the syntax for the command-line invocation is

# logitT groupFile.txt celfiles cdffile outputprefix

# where groupFile.txt is the groupfile that was previously

# generated , celfiles is a list of the CEL files to be

# analyzed, cdffile is the CDF file (Chip Definition File,

# which contains information about the layout of the chip),

# and outputprefix is the output prefix that will be

# prepended to all data files generated by the logit-T

# program.

prefix <- paste("LogitTFold",i,"U133",sep="")
fname <- paste("LogitTFoldRun",i,".txt",sep="")
cmd <- paste("/Users/rkennedy/logitT",fname,
paste(small.fnames ,collapse=" "),"HG-U133A_tag.CDF",
prefix)

system(cmd)

# Get the results of the logit-T analysis. As per the

# documentation for the logit-T program, the following

# output files are produced, with the output prefix

# prepended to all filenames instead of xxxx:

# xxxxT.txt is the main output file with the t-test

# values for each probeset. Rows are

# arranged by probeset and columns are

# arranged by comparison.

# xxxxCV.txt is the file containing the coefficients of

# variation for each probeset. This file is

# not used in the present analysis.

# xxxxW.txt is the file containing the standardized

# Wilcoxon W statistics for each probeset.

# This file is not used in the present

# analysis.

# xxxx.theta is the file containing the LogitExp gene

# expression index described in the Lemon et

# al. article. This file is not used in the

# present analysis.



www.manaraa.com

251

# All files are tab-delimited text files. For this

# analysis, each xxxxT.txt file contains only one

# comparison , so the files are two columns with the first

# being the probeset name and the second being the logit-T

# value for that comparison , along with a header in the

# first line of the file.

fname <- paste("LogitTFold",i,"U133T.txt",sep="")
results <- read.table(file=fname,header=TRUE,sep="\t")
results <- results[-1,]
gn <- results[,1]
score <- results[,2]

abs.score <- abs(score)
index <- order(abs.score ,decreasing=TRUE)

# rank the scores in decreasing order, with ties being

# assigned rank equal to the smallest rank of the group of

# ties

ranking <- rank(abs.score ,ties.method="min")

# reverse the rankings, as small logit-T scores indicate

# higher probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

# create a data frame with the probeset (gene) names, rank,

# and score in order of increasing logit-T scores

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("LogitTFoldOverallU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# count the number of spike-in probes ranked in the top 42

# (for the original list) or top 64 (for the expanded list)

# of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
num.large],expanded.spike)))

results <- data.frame(iteration=i,small.count , large.count)
outfile <- paste("LogitTFoldCountU133.csv",sep="")
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write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# create a data frame with the expected rank (based on fold

# change of the spike-in concentration) of the expanded list

# of spike-in probesets to compare to the actual rank (based

# on the logit-T values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("LogitTFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U133 Analysis

############################################################

#

# This performs an analysis of the Affymetrix U95 spike-in

# data set.

#

# As this analysis is similar to the U133 analysis, only

# differences between the analyses will be highlighted.

#

############################################################

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
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"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)
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spike.group <- 1:14
names(spike.group) <- spike.names

# These are the categories (experiment numbers) for the

# comparisons. Note that one chip in Experiment 3 of the

# U95 dataset did not hybridize properly, so that there are

# only 2 chips in this comparison rather than 3. Though

# not originally intended, this allows the assessment of the

# algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

num.large <- 14
num.small <- 14

for (i in (1:length(cat.names))) {
rep1 <- sum(category==1)
rep2 <- sum(category==cat.names[i])
small.fnames <- c(fnames[category==1],fnames[category==
cat.names[i]])

group <- c(rep("A",rep1),rep(LETTERS[i+1],rep2))
synonym <- paste(group,c(1:rep1,1:rep2),sep="")
data <- data.frame(small.fnames ,group,synonym)
write.table(data,file=paste("LogitTFoldU95Run",i,
".txt",sep=""),sep="\t",row.names=FALSE,col.names=
FALSE,quote=FALSE)

}

for (i in 1:length(cat.names)) {
index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]
prefix <- paste("LogitTFold",i,"U95",sep="")
fname <- paste("LogitTFoldU95Run",i,".txt",sep="")
cmd <- paste("/Users/rkennedy/logitT",fname,
paste(small.fnames ,collapse=" "), "HG_U95A.CDF", prefix)

system(cmd)
fname <- paste("LogitTFold",i,"U95T.txt",sep="")
results <- read.table(file=fname,header=TRUE,sep="\t")
results <- results[-1,]
gn <- results[,1]
score <- results[,2]
abs.score <- abs(score)
index <- order(abs.score ,decreasing=TRUE)
ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
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ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("LogitTFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("LogitTFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

outfile <- paste("LogitTFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U95 analysis

############################################################

#

# This performs an analysis on the GeneLogic Dilution data

# set.

#

# As this analysis is similar to the U133 and U95 analyses,

# only differences between the analyses will be highlighted.

#

############################################################

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",
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"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,5,23,
6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data=c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike

small.fnames <- fnames

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3) ,13,13,14,14,14)

# These are the categories (experiment numbers) for the

# comparisons. Note that only experiments 9 through 12 and

# experiment 14 have a sufficient number of chips for
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# comparisons using all algorithms. Thus, the baseline

# condition will be experiment 9. All experiments in the

# list will be compared to the baseline in turn.

cat.names <- unique(category[category > 9])

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {
rep1 <- sum(category==9)
rep2 <- sum(category==cat.names[i])
small.fnames <- c(fnames[category==9],fnames[category==
cat.names[i]])

group <- c(rep(LETTERS[1],rep1),rep(LETTERS[i+1],rep2))
synonym <- paste(group,c(1:rep1,1:rep2),sep="")
data <- data.frame(small.fnames ,group,synonym)
write.table(data,file=paste("LogitTFoldGDilutionRun",i,
".txt",sep=""),sep="\t",row.names=FALSE,col.names=
FALSE,quote=FALSE)

}

for (i in 1:length(cat.names)) {
index <- category==9 | category==cat.names[i]
small.fnames <- fnames[index]
prefix <- paste("LogitTFold",i,"GDilution",sep="")
fname <- paste("LogitTFoldGDilutionRun",i,".txt",sep="")
cmd <- paste("/Users/rkennedy/logitT",fname,
paste(small.fnames ,collapse=" "), "HG_U95A.CDF", prefix)

code <- system(cmd)
fname <- paste("LogitTFold",i,"GDilutionT.txt",sep="")
results <- read.table(file=fname,header=TRUE,sep="\t")
results <- results[-1,]
gn <- results[,1]
score <- results[,2]
abs.score <- abs(score)
index <- order(abs.score ,decreasing=TRUE)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("LogitTFoldOverallGDilution.csv", sep="")
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write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

t.score <- 1-pt(abs.score ,df=length(index)-2)
posindex <- (t.score <= 0.001)

small.count <- sum(!is.na(match(gn[posindex], spike.names)))
large.count <- sum(!is.na(match(gn[posindex],
expanded.spike)))

truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg
results <- data.frame(iteration=i,truepos,falsepos ,
trueneg,falseneg)

outfile <- paste("LogitTFoldCountGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("LogitTFoldRankGDilution.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=rep(i,
length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of GeneLogic Dilution Analysis
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A.3 mmgMOS Analysis of Spike-In Datasets

############################################################

#

# Program Name: mmgmosAnalysis.R

# Author: Richard Kennedy

# Date: 12/21/2007
#

# Purpose: This program performs an automated analysis on

# several sets of data using the RMA algorithm as the

# expression summary measure.

#

# Description: This program analyzes three separate

# datasets, the Affymetrix U95 and U133 Latin Square and the

# GeneLogic Dilution data. For each dataset, the

# appropriate data files are read and the mmgmos expression

# summary computed. The mmgmos values are then compared

# using multiple t-tests to give measures of significance

# for differential gene expression. One data file is

# created showing the p-values of the t-tests for all of the

# probesets on the chip, in increasing order (or decreasing

# order of significance); one data file gives the number of

# spike-in probes (from both the original Affymetrix list

# and the expanded list of McGee et al.) that are highly

# ranked; and one data file shows the actual rank based on

# the p-values versus the expected rank based on the

# concentration fold-change from the spike-in data.

# Although similar, separate computation routines are used

# for the Affymetrix U133 Latin Square, Affymetrix U95 Latin

# Square, and GeneLogic Dilution datasets due to slight

# differences in the analyses and for better readability.

#

############################################################

# Load the affy library. This is a standard library

# available through Bioconductor , which implements the

# functions for reading CEL files

library(affy)

# Load the puma library. This is a standard library

# available through Bioconductor , which implements the

# mmgmos function

library(puma)
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# Load the multtest library. This is a standard library

# available through Bioconductor , which implements the

# multiple t-test among other functions.

library(multtest)

# This function implements a pooled degrees of freedom

# function, which computes a composite degrees of freedom

# for a two-sample comparison based on the relative size

# of each of the two samples.

# Input: exprs - a matrix containing the expression values

# compare - a vector denoting the condition of each

# column in the exprs matrix, with 0 denoting

# the baseline condition and 1 denoting the

# experimental condition

# Output: a vector containing the pooled degrees of freedom

# for each row of the exprs matrix

df <- function(exprs,compare) {
var1 <- var(exprs[compare==1])
var0 <- var(exprs[compare==0])
n1 <- length(exprs[compare==1])
n0 <- length(exprs[compare==0])
result <- (var1+var0)ˆ2 / (var1ˆ2/(n1-1)+var0ˆ2/(n0-1))
return(result)

}

# End of declared functions

############################################################

#

# This performs an analysis of the Affymetrix U133 spike-in

# data set

#

############################################################

# These are the filenames , which are stored in order of the

# ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",
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"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

# Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

# These are the names of the spiked-in clones for the

# original 42 probes reported by Affymetrix. These are in

# the order given in the Affymetrix descriptor file included

# with the dataseta. Note that there are 3 clones in each

# group of clones spiked in at the same concentration for a

# given experiment (see the Affymetrix descriptor file for

# additional information).
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spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

# These are the concentration data for the clones in each

# experiment. These are ordered across columns by clone

# group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

# These are the group numbers for each of the spiked-in

# clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

# These are the names of the spiked-in clones for the

# expanded set of 64 probes reported by McGee et al. These

# are in the order given in their article and the

# supplemental files. Note that there are no longer 3

# clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
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"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

# These are the group numbers for each of the spiked-in

# clones given in the expanded.spike variable. Positive

# numbers denote the original 42 clones reported by

# Affymetrix , negative numbers the supplemental 22 clones

# given by McGee et al., to facilitate separate analyses if

# necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) to which

# each of the chips belongs

category <- rep(1:14,each=3)

# These are the categories (experiment numbers) for the

# comparisons. By default, the baseline condition will be

# experiment 1. All experiments in the list will be

# compared to the baseline in turn

cat.names <- unique(category[category!=1])

# This is a list of the filenames of the CEL files for this

# analysis. A separate variable is used to facilitate
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# subanalyses if necessary. For mmgmos, the model

# fitting is done over all chips.

small.fnames <- fnames
cel <- ReadAffy(filenames=small.fnames)
eset <- mmgmos(cel)
mmgmos.exprs <- exprs(eset)

# These are the number of probes in the expanded and

# original list of spiked-in clones.

num.large <- 64
num.small <- 42

# loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

# get the expression summary data for the comparison

index <- category==1 | category==cat.names[i]
data <- mmgmos.exprs[,index]

# construct the comparison vector for the multtest function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data,1,df,compare=compare)
ttest.mmgmos <- mt.teststat(data,compare)
rawp0.mmgmos <- 2*(1-pt(abs(ttest.mmgmos),t.df))
abs.score <- abs(rawp0.rma)
gn <- geneNames(cel)
index <- order(abs.score ,decreasing=FALSE)

# rank the scores in decreasing order, with ties being

# assigned rank equal to the smallest rank of the group of

# ties

ranking <- rank(abs.score ,ties.method="min")

# reverse the rankings, as small p-values indicate higher

# probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

# create a data frame with the probeset (gene) names, rank,

# and score in order of increasing S-Scores

results <- data.frame(name=gn[index],rank=ranking,score=
abs.score[index])
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outfile <- paste("mmgmosFoldOverallU1133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# count the number of spike-in probes ranked in the top 42

# (for the original list) or top 64 (for the expanded list)

# of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
num.large],expanded.spike)))

results <- data.frame(small.count ,large.count)
outfile <- paste("mmgmosFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# create a data frame with the expected rank (based on fold

# change of the spike-in concentration) of the expanded list

# of spike-in probesets to compare to the actual rank (based

# on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("mmgmosFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike ,expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U133 Analysis

############################################################

#

# This performs an analysis of the Affymetrix U95 spike-in

# data set

#

# As this analysis is similar to the U133 analysis, only

# differences between the analyses will be highlighted.

#

############################################################
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fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,
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64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

# These are the categories (experiment numbers) for the

# comparisons. Note that one chip in Experiment 3 of the

# U95 dataset did not hybridize properly, so that there are

# only 2 chips in this comparison rather than 3. Though

# not originally intended, this allows the assessment of the

# algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

small.fnames <- fnames
cel <- ReadAffy(filenames=small.fnames)
eset <- mmgmos(cel)
mmgmos.exprs <- exprs(eset)

num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {

data.mmgmos <- cbind(mmgmos.exprs[,category==1],
mmgmos.exprs[,category==cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data.mmgmos ,1,df,compare=compare)
ttest.mmgmos <- mt.teststat(data.mmgmos ,compare)
rawp0.mmgmos <- 2*(1-pt(abs(ttest.mmgmos),t.df))
abs.score <- abs(rawp0.mmgmos)
gn <- geneNames(cel)
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index <- order(abs.score ,decreasing=FALSE)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=geneNames(cel)[index],
iteration=rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("mmgmosFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("mmgmosFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

outfile <- paste("mmgmosFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U95 analysis

############################################################

#

# This performs an analysis on the GeneLogic Dilution data

# set

#

# As this analysis is similar to the U133 and U95 analyses,

# only differences between the analyses will be highlighted.
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#

############################################################

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,
5,23,6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike
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# These are the categories (experiment numbers) for the

# comparisons. Note that only experiments 9 through 12 and

# experiment 14 have a sufficient number of chips for

# comparisons using all algorithms. Thus, the baseline

# condition will be experiment 9. All experiments in the

# list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3),13,13,
14,14,14)

cat.names <- unique(category[category > 9])

small.fnames <- fnames
cel <- ReadAffy(filenames=small.fnames)
eset <- mmgmos(cel)
mmgmos.exprs <- exprs(eset)

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {

data.mmgmos <- cbind(mmgmos.exprs[,category==9],
mmgmos.exprs[,category==cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==9))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data.mmgmos ,1,df,compare=compare)
ttest.mmgmos <- mt.teststat(data.mmgmos ,compare)
rawp0.mmgmos <- 2*(1-pt(abs(ttest.mmgmos),t.df))
abs.score <- abs(rawp0.mmgmos)
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(cel)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("mmgmosFoldOverallGDilution.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

posindex <- (abs.score <= 0.001)
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small.count <- sum(!is.na(match(gn[posindex], spike.names)))
large.count <- sum(!is.na(match(gn[posindex],
expanded.spike)))

truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg
results <- data.frame(iteration=i,truepos,falsepos ,
trueneg,falseneg)

outfile <- paste("mmgmosFoldCountGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("mmgmosFoldRankGDilution.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=rep(i,
length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}
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A.4 Multichip S-Score Analysis of Spike-In Datasets

############################################################

#

# Program Name: MultiSScoreAnalysis.R

# Author: Richard Kennedy

# Date: 12/14/2007
#

# Purpose: This program performs an automated analysis on

# several sets of data using the multichip SScore function

# as the primary analysis tool.

#

# Description: This program analyzes three separate

# datasets, the Affymetrix U95 and U133 Latin Square and the

# GeneLogic Dilution data. For each dataset, the

# appropriate data files are read and the multichip S-Scores

# computed. One data file is created showing the S-Scores

# for all of the probesets on the chip, in increasing order

# (or decreasing order of significance); one data file gives

# the number of spike-in probes (from both the original

# Affymetrix list and the expanded list of McGee et al.)

# that are highly ranked; and one data file shows the actual

# rank based on S-Scores versus the expected rank based on

# the concentration fold-change from the spike-in data.

# Although similar, separate computation routines are

# used for the Affymetrix U133 Latin Square, Affymetrix U95

# Latin Square, and GeneLogic Dilution datasets due to

# slight differences in the analyses and for better

# readability.

#

############################################################

# Load the sscore library. This is a standard library

# available through Bioconductor , which implements the

# multichip sscore function

library(sscore)

############################################################

#

# This performs an analysis of the Affymetrix U133 spike-in

# data set

#

############################################################
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# These are the filenames , which are stored in order of the

# ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")
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# Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

# These are the SF and SDT data, which were previously

# computed using the ComputeSFandSDT function in the sscore

# package. By computing these beforehand , rather than on

# the fly, greatly speeds up the code. These are stored in

# the same order as the original filenames , i.e. using the

# ASCII collating sequence from the directory listing

SF <- c(5.051527 ,6.725639 ,6.112969 ,5.55356 ,6.591798 ,5.515133,
5.038274 ,5.457424 ,5.210437 ,5.213532 ,4.773091 ,5.170842,

4.710175 ,5.675154 ,4.853165 ,4.231661 ,5.702423 ,4.860462,

5.298943 ,4.589679 ,4.433209 ,5.372881 ,4.820332 ,4.853754,

4.243081 ,4.640638 ,4.394098 ,4.354416 ,4.831838 ,4.471514,

5.230509 ,6.470383 ,4.486733 ,4.493152 ,5.053464 ,5.441683,

5.909456 ,5.4285 ,5.656854 ,5.397539 ,5.100904 ,5.460907)

# Put the SF data in the same order as the filenames data

SF <- SF[c(16:42,1:15)]

SDT <- c(19.13716 ,23.33307 ,22.39198 ,20.10130 ,26.19655 ,21.01957,
18.94265 ,20.52486 ,18.65655 ,18.90886 ,17.14570 ,18.36193,

16.54648 ,20.35357 ,17.8932 ,16.53504 ,20.99434 ,18.89438,

20.23327 ,16.93843 ,16.72479 ,19.87543 ,17.24651 ,19.22224,

17.82088 ,18.08628 ,16.85401 ,19.35906 ,20.43274 ,20.28572,

19.90849 ,25.56167 ,17.58817 ,19.47506 ,22.84737 ,23.01953,

24.11946 ,20.12949 ,22.82104 ,21.20344 ,19.66584 ,20.07275)

SDT <- SDT[c(16:42,1:15)]

# These are the names of the spiked-in clones for the

# original 42 probes reported by Affymetrix. These are in

# the order given in the Affymetrix descriptor file included

# with the dataseta. Note that there are 3 clones in each

# group of clones spiked in at the same concentration for a

# given experiment (see the Affymetrix descriptor file for

# additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
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"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

# These are the concentration data for the clones in each

# experiment. These are ordered across columns by clone

# group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

# These are the group numbers for each of the spiked-in

# clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

# These are the names of the spiked-in clones for the

# expanded set of 64 probes reported by McGee et al. These

# are in the order given in their article and the

# supplemental files. Note that there are no longer 3

# clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
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"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

# These are the group numbers for each of the spiked-in

# clones given in the expanded.spike variable. Positive

# numbers denote the original 42 clones reported by

# Affymetrix , negative numbers the supplemental 22 clones

# given by McGee et al., to facilitate separate analyses if

# necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) to which

# each of the chips belongs

category <- rep(1:14,each=3)

# These are the categories (experiment numbers) for the

# comparisons. By default, the baseline condition will be

# experiment 1. All experiments in the list will be

# compared to the baseline in turn

cat.names <- unique(category[category!=1])

# These are the number of probes in the expanded and

# original list of spiked-in clones.

num.large <- 64
num.small <- 42

# loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

# get the intensity data, SF, and SDT for the comparison

index <- category==1 | category==cat.names[i]
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# This is a list of the filenames of the CEL files for this

# analysis. A separate variable is used to facilitate

# subanalyses if necessary.

small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
small.SF <- SF[index]
small.SDT <- SDT[index]

# construct the comparison matrix for the sscore function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

# compute the S-Scores

score <- SScore(data,classlabel=compare,SF=small.SF,
SDT=small.SDT)

abs.score <- abs(exprs(score))
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(score)

# rank the scores in decreasing order, with ties being

# assigned rank equal to the smallest rank of the group of

# ties

ranking <- rank(abs.score ,ties.method="min")

# reverse the rankings, as small S-Scores indicate higher

# probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

# create a data frame with the probeset (gene) names, rank,

# and score in order of increasing S-Scores

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)) ,rank=ranking,score=abs.score[index])

outfile <- paste("SScoreFoldOverallU133.csv",sep="")
write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

# count the number of spike-in probes ranked in the top 42

# (for the original list) or top 64 (for the expanded list)

# of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))
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large.count <- sum(!is.na(match(names(ranking)[1:
num.large],expanded.spike)))

results <- data.frame(iteration=i,small.count , large.count)
outfile <- paste("SScoreFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# create a data frame with the expected rank (based on fold

# change of the spike-in concentration) of the expanded list

# of spike-in probesets to compare to the actual rank (based

# on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("SScoreFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U133 Analysis

############################################################

#

# This performs an analysis of the Affymetrix U95 spike-in

# data set

#

# As this analysis is similar to the U133 analysis, only

# differences between the analyses will be highlighted.

#

############################################################

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
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"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

SF <- c(15.54389 ,16.90462 ,18.58895 ,17.57569 ,18.10556,
17.44596 ,19.05938 ,19.01886 ,15.19518 ,17.07320 ,17.70451,

15.51397 ,15.14165 ,15.71093 ,18.92873 ,17.59843 ,17.74718,

16.96576 ,19.88173 ,19.42636 ,14.22665 ,14.16075 ,11.39345,

10.92027 ,15.86836 ,13.19469 ,15.66899 ,14.32828 ,11.25717,

11.50788 ,13.16047 ,16.61321 ,13.50162 ,14.13247 ,12.45534,

13.73491 ,13.59590 ,13.24143 ,14.58290 ,13.75632 ,16.37373,

16.38092 ,13.26664 ,14.51221 ,15.94495 ,14.01617 ,13.29383,

17.34152 ,12.74790 ,13.66622 ,17.21439 ,12.42648 ,13.16133,

13.87641 ,18.97458 ,14.38793 ,14.25340 ,17.20059 ,15.56408)

SDT <- c(151.8202 ,164.8418 ,188.9549 ,179.0177 ,179.3972,
169.2196 ,188.5424 ,185.0203 ,152.1097 ,198.8227 ,176.3480,

210.3864 ,155.7234 ,163.5185 ,195.6335 ,187.2507 ,184.7659,

186.7471 ,214.4948 ,204.1949 ,207.5883 ,190.5452 ,163.2673,

158.7323 ,232.9045 ,188.8372 ,220.6606 ,205.0497 ,162.8883,

181.9430 ,185.1602 ,224.2842 ,192.2052 ,206.1543 ,179.4869,

202.1945 ,193.9658 ,196.5336 ,192.9138 ,136.5619 ,227.4531,

205.0031 ,172.1437 ,179.7536 ,220.7491 ,181.4627 ,164.0342,

203.9272 ,185.2207 ,168.6197 ,216.8669 ,164.1328 ,173.7930,

185.0183 ,254.3695 ,177.5792 ,181.8116 ,215.0447 ,199.3295)
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spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

# These are the categories (experiment numbers) for the

# comparisons. Note that one chip in Experiment 3 of the

# U95 dataset did not hybridize properly, so that there are

# only 2 chips in this comparison rather than 3. Though not

# originally intended, this allows the assessment of the

# algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {
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small.fnames <- c(fnames[category==1],fnames[category==
cat.names[i]])

data <- ReadAffy(filenames=small.fnames)
small.SF <- c(SF[category==1],SF[category== cat.names[i]])
small.SDT <- c(SDT[category==1],SDT[category==
cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

score <- SScore(data,classlabel=compare,SF=small.SF,SDT=
small.SDT)

abs.score <- abs(exprs(score))
gn <- geneNames(score)

index <- order(abs.score ,decreasing=TRUE)
ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("SScoreFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("SScoreFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

outfile <- paste("SScoreFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))
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}

# End of Affymetrix U95 analysis

############################################################

#

# This performs an analysis on the GeneLogic Dilution

# dataset.

#

# As this analysis is similar to the U133 and U95 analyses,

# only differences between the analyses will be highlighted.

#

############################################################

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

SF <- c(12.870930 ,9.969553 ,10.633744 ,5.498765 ,5.835703,
7.732482 ,11.598326 ,10.133451 ,6.454634 ,5.355627 ,7.001940,

8.849713 ,7.280378 ,12.280841 ,7.331615 ,19.023698 ,7.380893,

18.712581 ,7.834392 ,6.895325 ,7.254859 ,21.076266 ,10.342030,

7.940419 ,15.479335 ,14.88527)

SDT <- c(133.89655 ,101.82649 ,114.87093 ,37.85469 ,48.64600,
86.43693 ,143.22880 ,111.54653 ,48.30689 ,31.88864 ,49.17773,

91.11646 ,43.77653 ,122.86836 ,52.00780 ,172.02050 ,50.62660,

169.93095 ,46.71437 ,48.85516 ,56.43905 ,191.73461 ,66.32453,

53.81287 ,146.23999 ,144.8691)

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,5,23,
6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,
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0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

# These are the categories (experiment numbers) for the

# comparisons. Note that only experiments 9 through 12 and

# experiment 14 have a sufficient number of chips for

# comparisons using all algorithms. Thus, the baseline

# condition will be experiment 9. All experiments in the

# list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3),13,13,14,
14,14)

cat.names <- unique(category[category > 9 & category != 13])

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {

index <- category==9 | category==cat.names[i]
small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
small.SF <- SF[index]
small.SDT <- SDT[index]

compare <- c(rep(0,sum(as.integer(category==9))),rep(1,
sum(as.integer(category==cat.names[i]))))

score <- SScore(data,classlabel=compare,SF=small.SF,SDT=
small.SDT)
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abs.score <- abs(exprs(score))
gn <- geneNames(score)

index <- order(abs.score ,decreasing=TRUE)
ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("SScoreFoldOverallGDilution.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

posindex <- (abs.score >= 3.29)
small.count <- sum(!is.na(match(gn[posindex],spike.names)))
truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg
results <- data.frame(iteration=i,truepos,falsepos ,
trueneg,falseneg)

outfile <- paste("SScoreFoldCountGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("SScoreFoldRankGDilution.csv",sep="")
results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of GeneLogic Dilution Analysis



www.manaraa.com

285

A.5 Pooled S-Score Analysis of Spike-In Datasets

############################################################

#

# Program Name: PooledSScoreAnalysis.R

# Author: Richard Kennedy

# Date: 12/21/2007
#

# Purpose: This program performs an automated analysis on

# several sets of data using the pooled S-Score algorithm as #

the expression summary measure.

#

# Description: This program analyzes three separate

# datasets, the Affymetrix U95 and U133 Latin Square and the

# GeneLogic Dilution data. For each dataset, the

# appropriate data files are read and the pooled S-Scores

# are computed. One data file is created showing the pooled #

S-Scores for all of the probesets on the chip, in

# increasing order (or decreasing order of significance);

# one data file gives the number of spike-in probes (from

# both the original Affymetrix list and the expanded list of

# McGee et al.) that are highly ranked; and one data file

# shows the actual rank based on S-Scores versus the

# expected rank based on the concentration fold-change from

# the spike-in data. Although similar, separate computation #

routines are used for the Affymetrix U133 Latin Square,

# Affymetrix U95 Latin Square, and GeneLogic Dilution

# datasets due to slight differences in the analyses and for

# better readability.

#

############################################################

# Load the sscore library. This is a standard library

# available through Bioconductor , which implements the

# multichip sscore function

library(sscore)

# Load the robust library. This is a standard library

# available through CRAN, which implements the lmRob

# function for robust regression

library(robust)

# This function implements the pooled S-Score. The code

# is similar to the Bioconductor package sscore, but the
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# error estimate is calculated using a modification of the

# local pooled error (LPE) method of Jain et al. Code for

# the error estimate is adapted from the LPE package, also

# available through Bioconductor.

# Input:

# Output:

PooledSScore <- function(afbatch = stop("No CEL files
specified"),

conditions = stop("No list of comparisons given"), SF =
NULL,SDT =

NULL, rm.outliers = TRUE,rm.mask = TRUE, rm.extra = TRUE,

digits =

NULL,verbose = FALSE,celfile.path = NULL, celfile.names =

NULL,quant=0.001) {

fname <- sampleNames(afbatch)

# Identify outliers using the computeOutlier function from

# the sscore package. This returns a matrix with rows

# corresponding to probe and columns to chip. The value

# of an element in the matrix is set to TRUE if the probe

# on that chip is an outlier, otherwise it is set to FALSE.

outlier <- computeOutlier(afbatch)

# Initialize various variables used in the computations. l1

# and l2 represent vectors of the variances for the

# probesets in the baseline and experimental conditions ,

# respectively. Variances are assumed to be the same for

# each probeset across chips, so that only one variance

# per probeset is computed. pnames is a vector of probe

# names in the same order as l1 and l2.

l1 <- l2 <- NULL
pnames <- NULL

# This is the gamma proportionality constant from the

# original S-Score article.

m.gamma <- 0.1

# Score is a vector of S-Scores, one for each probeset.

# probenames stores the probeset names in the same order as

# Score.

probenames <- geneNames(afbatch)
Score <- CorrDiff <- rep(0.0,length(probenames))
writeLines("Computing S-score values")
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# Get the indices for the the PM and MM probes for lookup

pmidx <- pmindex(afbatch)
mmidx <- mmindex(afbatch)

# Get the intensity values for each condition , with intens1

# being the baseline and intens2 being the experimental

# condition

intens1 <- t(t(intensity(afbatch[,conditions==0]))*
SF[conditions==0])

intens2 <- t(t(intensity(afbatch[,conditions==1]))*
SF[conditions==1])

# Find the maximum intensity for each condition

max1 <- apply(rbind(pm(afbatch[,conditions==0]),
mm(afbatch[,conditions==0])),2,max)*SF[conditions==0]

max2 <- apply(rbind(pm(afbatch[,conditions==1]),
mm(afbatch[,conditions==1])),2,max)*SF[conditions==1]

# this loops through each of the probesets on a given pair

# of chips

for (i in 1:length(probenames)) {

# get the PM and MM values, as well as minimum intensity

# values, for the given probeset on each chip of the pair

PM1 <- intens1[pmidx[[i]],,drop=FALSE]
MM1 <- intens1[mmidx[[i]],,drop=FALSE]
PM2 <- intens2[pmidx[[i]],,drop=FALSE]
MM2 <- intens2[mmidx[[i]],,drop=FALSE]
min1 <- apply(rbind(PM1,MM1),2,min)
min2 <- apply(rbind(PM2,MM2),2,min)

# adjust each of the PM and MM intensities relative to the

# minimum values

PM1 <- t(t(PM1) - min1)
PM2 <- t(t(PM2) - min2)
MM1 <- t(t(MM1) - min1)
MM2 <- t(t(MM2) - min2)

# find the index of the probe pairs of the probeset to use

# in calculations. A probe pair is used if it is not

# "saturated" (i.e., the intensity is less than the maximum

# - minimum) and if it is not identified as an outlier /
# masked value in the .CEL file

index <- cbind((PM1<max1-min1),(PM2<max2-min2),(MM1<
max1-min1),(MM2<max2-min2))
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index <- apply(index,1,any)
if (any(rm.outliers ,rm.mask,rm.extra)) {

outlier1 <- outlier[pmidx[[i]],conditions==0,
drop=FALSE] | outlier[mmidx[[i]],conditions==0,
drop=FALSE]

outlier2 <- outlier[pmidx[[i]],conditions==1,
drop=FALSE] | outlier[mmidx[[i]],conditions==1,
drop=FALSE]

index <- index & (!apply(outlier1 ,1,any)) &
(!apply(outlier2 ,1,any))

}

N <- sum(as.integer(index))

# find the PM-MM differences for the probeset on each of the

# two chips in the pair

diff1 <- (PM1-MM1)[index,,drop=FALSE]
diff2 <- (PM2-MM2)[index,,drop=FALSE]

# Append the PM-MM differences for this probeset to the

# running list

l1 <- rbind(l1,diff1)
l2 <- rbind(l2,diff2)

}

# Using the PM-MM differences for each condition , calculate

# the variance using the LPE method.

# First find the mean intensity for each row (probeset)

# across chips for the baseline condition

l1.means <- rowMeans(l1)

# Find the quantiles for the intensities. For each probeset

# having a mean intensity within a quantile, assign all

# intensity values for that probeset (across chips) to the

# group for that quantile

quantile.l1 <- quantile(l1.means, probs = seq(0, 1, quant),
na.rm = TRUE)

index <- rep(0,length(l1.means)-1)
for (i in 2:length(quantile.l1)) {

index[l1.means > quantile.l1[i-1] & l1.means <=
quantile.l1[i]] <- i-1

}

# Find the mean and variance (using trimmed mean for the
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# former and the median absolute deviation for the latter) #

for each quantile, if it exists. Note that it is possible

# for consecutive quantiles to have the same threshold

# points, which is particularly likely in the low intensity

# region where many probesets have the same intensity value.

# In this case, all of the probesets are assigned to the

# group for the "first" quantile of the consecutive set,

# leaving the "remaining" quantiles of the consecutive set

# empty. Assign these "remaining" quantiles to have NA

# mean and variance.

mean.l1 <- var.l1 <- rep(0,length(quantile.l1)-1)
for (i in 1:(length(quantile.l1)-1)) {

if (length(l1[index==i,]) != 0) {
mean.l1[i] <- mean(as.vector(l1[index==i,]),
na.rm=TRUE,trim=0.125)

var.l1[i] <- mad(as.vector(l1[index==i,]),
na.rm=TRUE)

} else {
mean.l1[i] <- NA
var.l1[i] <- NA

}

}

# Now address the quantiles having NA mean and variance,

# using an approach based on the original LPE method. If

# the mean and variance of the "previous" quantile is not

# NA, then the quantile having NA mean and variance is

# assigned a mean and variance that is the average of the

# "previous" and "next" quantiles. Otherwise the quantile

# having NA mean and variance is assigned the mean and

# variance of the "next" quantile, which should not be NA at

# the uppermost intensities because these are sparsely

# populated.

if (any(is.na(var.l1)) ) {
for (i in (length(var.l1)-1):1 ) {

if (is.na(var.l1[i])) {
var.l1[i] <- ifelse(!is.na(var.l1[i-1]),
mean(var.l1[i+1], var.l1[i-1]),
var.l1[i+1])

}

}

}

# Perform a robust regression of variance on mean squared
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# intensity to estimate the fitting parameters

mean.squared <- as.vector(mean.l1)ˆ2
lm.l1 <- lmRob(as.vector(var.l1) ˜ mean.squared)

# Compute the predicted variance for each probeset based on

# the robust regression model, which will be used in the

# calculation of the S-Score values

alpha <- lm.l1$coefficients[1]
gamma <- lm.l1$coefficients[2]
predict.var1 <- gamma*l1ˆ2+alpha

# Perform a similar computation of variance for the

# experimental condition

l2.means <- rowMeans(l2)
quantile.l2 <- quantile(l2.means, probs = seq(0, 1, quant),
na.rm = TRUE)

index <- rep(0,length(l2.means)-1)
for (i in 2:length(quantile.l2)) {

index[l2.means > quantile.l2[i-1] & l2.means <=
quantile.l2[i]] <- i-1

}

mean.l2 <- var.l2 <- rep(0,length(quantile.l2)-1)
for (i in 1:(length(quantile.l2)-1)) {

if (length(l2[index==i,]) != 0) {
mean.l2[i] <- mean(as.vector(l2[index==i,]),
na.rm=TRUE,trim=0.125)

var.l2[i] <- mad(as.vector(l2[index==i,]),
na.rm=TRUE)

} else {
mean.l2[i] <- NA
var.l2[i] <- NA

}

}

if (any(is.na(var.l2)) ) {
for (i in (length(var.l2)-1):1 ) {

if (is.na(var.l2[i])) {
var.l2[i] <- ifelse(!is.na(var.l2[i-1]),

mean(var.l2[i+1], var.l2[i-1]),

var.l2[i+1])

}

}

}
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mean.squared <- as.vector(mean.l2)ˆ2
lm.l2 <- lmRob(as.vector(var.l2) ˜ mean.squared)
alpha <- lm.l2$coefficients[1]
gamma <- lm.l2$coefficients[2]
predict.var2 <- gamma*l2ˆ2+alpha

# Note that the PM-MM differences are not associated with

# their respective probesets for calculation of the S-Score

# values. Thus, some of the S-Score calculations must be

# performed again, since the variance estimates were not

# available previously. This inefficiency will be corrected

# in later versions.

for (i in 1:length(probenames)) {
PM1 <- intens1[pmidx[[i]],,drop=FALSE]
MM1 <- intens1[mmidx[[i]],,drop=FALSE]
PM2 <- intens2[pmidx[[i]],,drop=FALSE]
MM2 <- intens2[mmidx[[i]],,drop=FALSE]
min1 <- apply(rbind(PM1,MM1),2,min)
min2 <- apply(rbind(PM2,MM2),2,min)

# adjust each of the PM and MM intensities relative to the

# minimum values

PM1 <- t(t(PM1) - min1)
PM2 <- t(t(PM2) - min2)
MM1 <- t(t(MM1) - min1)
MM2 <- t(t(MM2) - min2)

# find the index of the probe pairs of the probeset to use

# in calculations. A probe pair is used if it is not

# "saturated" (i.e., the intensity is less than the maximum

# - minimum) and if it is not identified as an outlier /
# masked value in the .CEL file

index <- cbind((PM1<max1-min1),(PM2<max2-min2),(MM1<
max1-min1),(MM2<max2-min2))

index <- apply(index,1,any)
if (any(rm.outliers ,rm.mask,rm.extra)) {

outlier1 <- outlier[pmidx[[i]],conditions==0,
drop=FALSE] | outlier[mmidx[[i]],conditions==0,
drop=FALSE]

outlier2 <- outlier[pmidx[[i]],conditions==1,
drop=FALSE] | outlier[mmidx[[i]],conditions==1,
drop=FALSE]
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index <- index & (!apply(outlier1 ,1,any)) &
(!apply(outlier2 ,1,any))

}

N <- sum(as.integer(index))

# find the PM-MM differences for the probeset on each of the

# two chips in the pair

diff1 <- (PM1-MM1)[index,,drop=FALSE]
diff2 <- (PM2-MM2)[index,,drop=FALSE]

# Compute the S-Score values. This follows the formula in

# the original program (and the J Mol Biol article) except

# the predicted variance based on the LPE method is

# substituted for the variance based on the SDT value

f.err <- (apply(diff1,1,sum)-apply(diff2,1,sum))/
sqrt(sum(predict.var1[i,]) + sum(predict.var2[i,]))

# threshold or impute outlying f.err values. The cutoff of

# 15 was arbitrarily decided in the original version; how it

# was determined is unknown

f.err[f.err > 15.0] <- 15.0
f.err[f.err < -15.0] <- -15.0

Score[i] <- sum(f.err)

# estimate the variance / covariance values, for calculating
# the CorrDiff

Sxx <- sum(mean(diff1)ˆ2)
Syy <- sum(mean(diff2)ˆ2)
Sxy <- sum(mean(diff1)*mean(diff2))

Sx <- 0
Sy <- 0

# transform the S-Score estimate by dividing by a function

# of the number of probes in the probeset

if (N > 0)
Score[i] <- Score[i] / sqrt(N) else
Score[i] <- 0

# calculate the CorrDiff. CorrDiffs below the threshold of

# 1e-3 are imputed to be 0, which was also arbitrarily

# decided in the first version

if (N>2 && ((Sxx-Sx*Sx/N)*(Syy-Sy*Sy/N) > 1.e-3))
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CorrDiff[i] <- (Sxy-Sx*Sy/N)/sqrt((Sxx-Sx*Sx/N)*
(Syy-Sy*Sy/N)) else

CorrDiff[i] <- 0.0

}

# now renormalize the S-Score values, which gives alpha

writeLines("Renormalizing S-scores")

x <- Score
Sx <- sum(x)
Sxx <- sum(x*x)

# calculate the mean and standard deviation of the entire

# set of S-Scores

Sstdev <- sqrt((Sxx-Sx*Sx/length(Score))/length(Score))
meanSx <- Sx/length(Score)

# find the trimmed S-score values, using a cutoff of those

# S-Scores within 3 standard deviations of the mean

x <- Score-meanSx;
x <- x[abs(x) < 3*Sstdev]
Sx <- sum(x)
Sxx <- sum(x*x)
num <- length(x)

# calculate the trimmed mean and standard deviation. Again,

# the cutoff of 0.01 was arbitrarily decided in the first

# version

Sstdev <- ((Sxx-Sx*Sx/num)/num)
if (Sstdev < 0.01)

Sstdev <- 1.0 else
Sstdev <- sqrt(Sstdev)

m.alpha <- Sstdev
meanSx <- Sx/num+meanSx

# perform the renormalization , using the trimmed mean and

# standard deviation values

Score <- (Score-meanSx)/Sstdev

fn1 <- (fname[conditions==0])[1]
fn2 <- (fname[conditions==1])[1]

# output information on these parameters if desired by the

# user

if (verbose) {
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Chip <- cdfName(afbatch)
num.probesets <- length(Score)
writeLines("S-score data. Parameter section:")

writeLines(sprintf("Probearray type: %s", Chip))

writeLines(sprintf("sample1: %s", fn1))

writeLines(sprintf("sample2: %s", fn2))

writeLines(sprintf("Alpha--error coupling factor within

a probeset: %8.3f",m.alpha))

writeLines(sprintf("Gamma--weight of multiplicative

error: %8.3f",m.gamma))

writeLines(sprintf("Number of Probesets:

%i",num.probesets))

writeLines(" ")

writeLines("Scaling Factor:")

printSF <- formatC(SF[conditions==0],digits=3,
width=8,format="f")

writeLines(sprintf(" sample1 (class label 0):

%s",paste(printSF,collapse=" ")))
printSF <- formatC(SF[conditions==1],digits=3,
width=8,format="f")

writeLines(sprintf(" sample2 (class label 1):

%s",paste(printSF,collapse=" ")))
writeLines("SDT background noise:")

printSDT <- formatC(SDT[conditions==0],digits=3,
width=8,format="f")

writeLines(sprintf(" sample1 (class label 0):

%s",paste(printSDT,collapse=" ")))
printSDT <- formatC(SDT[conditions==1],digits=3,
width=8,format="f")

writeLines(sprintf(" sample2 (class label 1):

%s",paste(printSDT,collapse=" ")))
writeLines("Max Intensity:")

printMax <- formatC(max1,digits=3,width=8, format="f")
writeLines(sprintf(" sample1 (class label 0):

%s",paste(printMax,collapse=" ")))
printMax <- formatC(max2,digits=3,width=8, format="f")
writeLines(sprintf(" sample2 (class label 1):

%s",paste(printMax,collapse=" ")))
writeLines(" ")

}

# round the S-Scores and CorrDiff to the number of digits

# specified by the user. For the desktop version, this was

# 3

if (!is.null(digits)) {
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Score <- round(Score,digits)
CorrDiff <- round(CorrDiff,digits)

}

Score <- as.matrix(Score)
CorrDiff <- as.matrix(CorrDiff)
rownames(Score) <- rownames(CorrDiff) <- geneNames(afbatch)
colnames(Score) <- colnames(CorrDiff) <- "Class 0 vs 1"
comparison <- 1
Score.pData <- data.frame(comparison ,row.names="Class 0 vs
1")

Score.Metadata <- data.frame(labelDescription = "arbitrary
numbering",

row.names = "comparison")
ScorePheno <- new("AnnotatedDataFrame", data=Score.pData ,
varMetadata =

Score.Metadata)

# put the values into an ExprSet to return. The phenoData ,

# annotation , and description are the same as the AffyBatch

# object

eset <- new("ExpressionSet",
exprs=Score,

phenoData=ScorePheno ,

annotation=annotation(afbatch))

return(eset)
}

## end of adapted code

############################################################

#

# This performs an analysis of the Affymetrix U133 spike-in

# data set

#

############################################################

# These are the filenames , which are stored in order of the

# ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",
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"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

# Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

# These are the SF and SDT data, which were previously

# computed using the ComputeSFandSDT function in the sscore

# package. By computing these beforehand , rather than on

# the fly, greatly speeds up the code. These are stored in

# the same order as the original filenames , i.e. using the
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# ASCII collating sequence from the directory listing

SF <- c(5.051527, 6.725639, 6.112969, 5.55356, 6.591798,
5.515133, 5.038274, 5.457424, 5.210437, 5.213532, 4.773091,

5.170842, 4.710175, 5.675154, 4.853165, 4.231661, 5.702423,

4.860462, 5.298943, 4.589679, 4.433209, 5.372881, 4.820332,

4.853754, 4.243081, 4.640638, 4.394098, 4.354416, 4.831838,

4.471514, 5.230509, 6.470383, 4.486733, 4.493152, 5.053464,

5.441683, 5.909456, 5.4285, 5.656854, 5.397539, 5.100904,

5.460907)

# Put the SF data in the same order as the filenames data

SF <- SF[c(16:42,1:15)]

SDT <- c(19.13716, 23.33307, 22.39198, 20.10130, 26.19655,
21.01957, 18.94265, 20.52486, 18.65655, 18.90886, 17.14570,

18.36193, 16.54648, 20.35357, 17.8932, 16.53504, 20.99434,

18.89438, 20.23327, 16.93843, 16.72479, 19.87543, 17.24651,

19.22224, 17.82088, 18.08628, 16.85401, 19.35906, 20.43274,

20.28572, 19.90849, 25.56167, 17.58817, 19.47506, 22.84737,

23.01953, 24.11946, 20.12949, 22.82104, 21.20344, 19.66584,

20.07275)

SDT <- SDT[c(16:42,1:15)]

# These are the names of the spiked-in clones for the

# original 42 probes reported by Affymetrix. These are in

# the order given in the Affymetrix descriptor file included

# with the dataseta. Note that there are 3 clones in each

# group of clones spiked in at the same concentration for a

# given experiment (see the Affymetrix descriptor file for

# additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

# These are the concentration data for the clones in each

# experiment. These are ordered across columns by clone
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# group and across rows by experiment (or chip group).

spike.conc <- spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

# These are the group numbers for each of the spiked-in

# clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

# These are the names of the spiked-in clones for the

# expanded set of 64 probes reported by McGee et al. These

# are in the order given in their article and the

# supplemental files. Note that there are no longer 3

# clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
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"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

# These are the group numbers for each of the spiked-in

# clones given in the expanded.spike variable. Positive

# numbers denote the original 42 clones reported by

# Affymetrix , negative numbers the supplemental 22 clones

# given by McGee et al., to facilitate separate analyses if

# necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) to which

# each of the chips belongs

category <- rep(1:14,each=3)

# These are the categories (experiment numbers) for the

# comparisons. By default, the baseline condition will be

# experiment 1. All experiments in the list will be

# compared to the baseline in turn

cat.names <- unique(category[category!=1])

# These are the number of probes in the expanded and

# original list of spiked-in clones.

num.large <- 64
num.small <- 42

# loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

# get the intensity data, SF, and SDT for the comparison

index <- category==1 | category==cat.names[i]

# This is a list of the filenames of the CEL files for this

# analysis. A separate variable is used to facilitate

# subanalyses if necessary.

small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
small.SF <- SF[index]
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small.SDT <- SDT[index]

# construct the comparison matrix for the sscore function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

# compute the S-Scores

score <- PooledSScore(data,conditions=compare,SF=
small.SF ,SDT=small.SDT)

abs.score <- abs(exprs(score))
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(score)

# rank the scores in decreasing order, with ties being

# assigned rank equal to the smallest rank of the group of

# ties

ranking <- rank(abs.score ,ties.method="min")

# reverse the rankings, as small S-Scores indicate higher

# probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

# create a data frame with the probeset (gene) names, rank,

# and score in order of increasing S-Scores

results <- data.frame(name=gn[index],
iteration=rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("PooledSScoreFoldOverallU133.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# count the number of spike-in probes ranked in the top 42

# (for the original list) or top 64 (for the expanded list)

# of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
num.large], expanded.spike)))

results <- data.frame(iteration=i,small.count , large.count)
outfile <- paste("PooledSScoreFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))
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# create a data frame with the expected rank (based on fold

# change of the spike-in concentration) of the expanded list

# of spike-in probesets to compare to the actual rank (based

# on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("PooledSScoreFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# end of Affymetrix U133A analysis

############################################################

#

# This performs an analysis of the Affymetrix U95 spike-in

# data set

#

# As this analysis is similar to the U133 analysis, only

# differences between the analyses will be highlighted.

#

############################################################

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
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"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

SF <- c(15.54389, 16.90462, 18.58895, 17.57569, 18.10556,
17.44596, 19.05938, 19.01886, 15.19518, 17.07320, 17.70451,

15.51397, 15.14165, 15.71093, 18.92873, 17.59843, 17.74718,

16.96576, 19.88173, 19.42636, 14.22665, 14.16075, 11.39345,

10.92027, 15.86836, 13.19469, 15.66899, 14.32828, 11.25717,

11.50788, 13.16047, 16.61321, 13.50162, 14.13247, 12.45534,

13.73491, 13.59590, 13.24143, 14.58290, 13.75632, 16.37373,

16.38092, 13.26664, 14.51221, 15.94495, 14.01617, 13.29383,

17.34152, 12.74790, 13.66622, 17.21439, 12.42648, 13.16133,

13.87641, 18.97458, 14.38793, 14.25340, 17.20059, 15.56408)

SDT <- c(151.8202, 164.8418, 188.9549, 179.0177, 179.3972,
169.2196, 188.5424, 185.0203, 152.1097, 198.8227, 176.3480,

210.3864, 155.7234, 163.5185, 195.6335, 187.2507, 184.7659,

186.7471, 214.4948, 204.1949, 207.5883, 190.5452, 163.2673,

158.7323, 232.9045, 188.8372, 220.6606, 205.0497, 162.8883,

181.9430, 185.1602, 224.2842, 192.2052, 206.1543, 179.4869,

202.1945, 193.9658, 196.5336, 192.9138, 136.5619, 227.4531,

205.0031, 172.1437, 179.7536, 220.7491, 181.4627, 164.0342,

203.9272, 185.2207, 168.6197, 216.8669, 164.1328, 173.7930,

185.0183, 254.3695, 177.5792, 181.8116, 215.0447, 199.3295)

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
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0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

small.fnames <- fnames

# These are the categories (experiment numbers) for the

# comparisons. Note that one chip in Experiment 3 of the

# U95 dataset did not hybridize properly, so that there are

# only 2 chips in this comparison rather than 3. Though not

# originally intended, this allows the assessment of the

# algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {

small.fnames <- c(fnames[category==1],fnames[category==
cat.names[i]])

data <- ReadAffy(filenames=small.fnames)
small.SF <- c(SF[category==1],SF[category== cat.names[i]])
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small.SDT <- c(SDT[category==1],SDT[category==
cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

score <- PooledSScore(data,conditions=compare,SF=
small.SF ,SDT=small.SDT)

abs.score <- abs(exprs(score))
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(score)

ranking <- rank(abs.score ,ties.method="min")

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("PooledSScoreFoldOverallU95.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("PooledSScoreFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[spike.group[spike.names]],actualrank=

ranking[spike.names])

outfile <- paste("PooledSScoreFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names= (i==1),append=(i!=1))
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}

# end of Affymetrix U95 analysis

############################################################

#

# This performs an analysis on the GeneLogic Dilution data

# set

#

# As this analysis is similar to the U133 and U95 analyses,

# only differences between the analyses will be highlighted.

#

############################################################

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

SF <- c(12.870930, 9.969553, 10.633744, 5.498765, 5.835703,
7.732482, 11.598326, 10.133451, 6.454634, 5.355627, 7.001940,

8.849713, 7.280378, 12.280841, 7.331615, 19.023698,

7.380893, 18.712581, 7.834392, 6.895325, 7.254859, 21.076266,

10.342030, 7.940419, 15.479335, 14.88527)

SDT <- c(133.89655, 101.82649, 114.87093, 37.85469, 48.64600,
86.43693, 143.22880, 111.54653, 48.30689, 31.88864, 49.17773,

91.11646, 43.77653, 122.86836, 52.00780, 172.02050,

50.62660, 169.93095, 46.71437, 48.85516, 56.43905, 191.73461,

66.32453, 53.81287, 146.23999, 144.8691)

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,5,23,
6,7,24,8,9,25,10,11,12,13,26)]
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spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) for the

# comparisons. Note that only experiments 9 through 12 and

# experiment 14 have a sufficient number of chips for

# comparisons using all algorithms. Thus, the baseline

# condition will be experiment 9. All experiments in the

# list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3) ,13,13,14,14,14)
cat.names <- unique(category[category > 9])

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {

index <- category==9 | category==cat.names[i]
small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
small.SF <- SF[index]
small.SDT <- SDT[index]
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compare <- c(rep(0,sum(as.integer(category==9))),rep(1,
sum(as.integer(category==cat.names[i]))))

score <- PooledSScore(data,conditions=compare,SF=
small.SF ,SDT=small.SDT)

abs.score <- abs(exprs(score))
index <- order(abs.score ,decreasing=TRUE)
gn <- geneNames(score)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("PooledSScoreFoldOverallGDilution.csv",
sep="")

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names= (i==1),append=(i!=1))

posindex <- (abs.score >= 3.29)
small.count <- sum(!is.na(match(gn[posindex], spike.names)))
large.count <- sum(!is.na(match(gn[posindex],
expanded.spike)))

truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg

results <- data.frame(iteration=i,truepos,falsepos ,trueneg,
falseneg)

outfile <- paste("PooledSScoreFoldCountGDilution.csv",
sep="")

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("PooledSScoreFoldRankGDilution.csv",
sep="")
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results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of GeneLogic Dilution Analysis
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A.6 RMA Analysis of Spike-In Datasets

############################################################

#

# Program Name: RMAAnalysis.R

# Author: Richard Kennedy

# Date: 12/21/2007
#

# Purpose: This program performs an automated analysis on

# several sets of data using the RMA algorithm as the

# expression summary measure.

#

# Description: This program analyzes three separate

# datasets, the Affymetrix U95 and U133 Latin Square and the

# GeneLogic Dilution data. For each dataset, the

# appropriate data files are read and the RMA expression

# summary computed. The RMA values are then compared using

# multiple t-tests to give measures of significance for

# differential gene expression. One data file is created

# showing the p-values of the t-tests for all of the

# probesets on the chip, in increasing order (or decreasing

# order of significance); one data file gives the number of

# spike-in probes (from both the original Affymetrix list

# and the expanded list of McGee et al.) that are highly

# ranked; and one data file shows the actual rank based on

# the p-values versus the expected rank based on the

# concentration fold-change from the spike-in data.

# Although similar, separate computation routines are used

# for the Affymetrix U133 Latin Square, Affymetrix U95 Latin

# Square, and GeneLogic Dilution datasets due to slight

# differences in the analyses and for better readability.

#

############################################################

# Load the affy library. This is a standard library

# available through Bioconductor , which implements the

# functions for reading CEL files

library(affy)

# Load the multtest library. This is a standard library

# available through Bioconductor , which implements the

# multiple t-test among other functions.

library(multtest)
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# This function implements a pooled degrees of freedom

# function, which computes a composite degrees of freedom

# for a two-sample comparison based on the relative size

# of each of the two samples.

# Input: exprs - a matrix containing the expression values

# compare - a vector denoting the condition of each

# column in the exprs matrix, with 0 denoting

# the baseline condition and 1 denoting the

# experimental condition

# Output: a vector containing the pooled degrees of freedom

# for each row of the exprs matrix

df <- function(exprs,compare) {
var1 <- var(exprs[compare==1])
var0 <- var(exprs[compare==0])
n1 <- length(exprs[compare==1])
n0 <- length(exprs[compare==0])
result <- (var1+var0)ˆ2 / (var1ˆ2/(n1-1)+var0ˆ2/(n0-1))
return(result)

}

# End of declared functions

############################################################

#

# This performs an analysis of the Affymetrix U133 spike-in

# data set

#

############################################################

# These are the filenames , which are stored in order of the

# ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",
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"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

# Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

# These are the names of the spiked-in clones for the

# original 42 probes reported by Affymetrix. These are in

# the order given in the Affymetrix descriptor file included

# with the dataseta. Note that there are 3 clones in each

# group of clones spiked in at the same concentration for a

# given experiment (see the Affymetrix descriptor file for

# additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
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"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")

# These are the concentration data for the clones in each

# experiment. These are ordered across columns by clone

# group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

# These are the group numbers for each of the spiked-in

# clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

# These are the names of the spiked-in clones for the

# expanded set of 64 probes reported by McGee et al. These

# are in the order given in their article and the

# supplemental files. Note that there are no longer 3

# clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
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"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

# These are the group numbers for each of the spiked-in

# clones given in the expanded.spike variable. Positive

# numbers denote the original 42 clones reported by

# Affymetrix , negative numbers the supplemental 22 clones

# given by McGee et al., to facilitate separate analyses if

# necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) to which

# each of the chips belongs

category <- rep(1:14,each=3)

# These are the categories (experiment numbers) for the

# comparisons. By default, the baseline condition will be

# experiment 1. All experiments in the list will be

# compared to the baseline in turn

cat.names <- unique(category[category!=1])

# This is a list of the filenames of the CEL files for this

# analysis. A separate variable is used to facilitate

# subanalyses if necessary. For RMA, the normalization will

# be done over all chips, as this seems to be the commonly

# accepted practice.

small.fnames <- fnames
cel <- ReadAffy(filenames=small.fnames)
eset <- rma(cel)
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rma.exprs <- exprs(eset)

# These are the number of probes in the expanded and

# original list of spiked-in clones.

num.large <- 64
num.small <- 42

# loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

# get the expression summary data for the comparison

index <- category==1 | category==cat.names[i]
data <- rma.exprs[,index]

# construct the comparison vector for the multtest function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data,1,df,compare=compare)
ttest.rma <- mt.teststat(data,compare)
rawp0.rma <- 2*(1-pt(abs(ttest.rma),t.df))
abs.score <- abs(rawp0.rma)
gn <- geneNames(cel)
index <- order(abs.score ,decreasing=FALSE)

# rank the scores in decreasing order, with ties being

# assigned rank equal to the smallest rank of the group of

# ties

ranking <- rank(abs.score ,ties.method="min")

# reverse the rankings, as small p-values indicate higher

# probability of differential expression

ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

# create a data frame with the probeset (gene) names, rank,

# and score in order of increasing S-Scores

results <- data.frame(name=geneNames(cel)[index],rank=
ranking, score=abs.score[index])

outfile <- paste("RMAFoldOverallU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

num.zero <- sum(abs.score==0)
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# count the number of spike-in probes ranked in the top 42

# (for the original list) or top 64 (for the expanded list)

# of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
max(num.small , num.zero)],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
max(num.large , num.zero)],expanded.spike)))

results <- data.frame(small.count ,large.count)
outfile <- paste("RMAFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# create a data frame with the expected rank (based on fold

# change of the spike-in concentration) of the expanded list

# of spike-in probesets to compare to the actual rank (based

# on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RMAFoldRankU133.csv",sep="")
results <- data.frame(name=expanded.spike , expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U133 Analysis

############################################################

#

# This performs an analysis of the Affymetrix U95 spike-in

# data set

#

# As this analysis is similar to the U133 analysis, only

# differences between the analyses will be highlighted.

#

############################################################

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",



www.manaraa.com

316

"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,
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512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

small.fnames <- fnames

# These are the categories (experiment numbers) for the

# comparisons. Note that one chip in Experiment 3 of the

# U95 dataset did not hybridize properly, so that there are

# only 2 chips in this comparison rather than 3. Though

# not originally intended, this allows the assessment of the

# algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])

cel <- ReadAffy(filenames=small.fnames)
eset <- rma(cel)
rma.exprs <- exprs(eset)

num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {

data <- cbind(rma.exprs[,category==1],rma.exprs[, category==
cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data,1,df,compare=compare)
ttest.rma <- mt.teststat(data,compare)
rawp0.rma <- 2*(1-pt(abs(ttest.rma),t.df))
abs.score <- abs(rawp0.rma)
gn <- geneNames(cel)
index <- order(abs.score ,decreasing=FALSE)

ranking <- rank(abs.score ,ties.method="min")
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ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- geneNames(cel)[index]

results <- data.frame(name=geneNames(cel)[index],
iteration=rep(i,length(index)),rank=ranking,score=
abs.score[index])

outfile <- paste("RMAFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("RMAFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)), expectedrank=
fold.rank[spike.group[spike.names]], actualrank=

ranking[spike.names])

outfile <- paste("RMAFoldRankU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U95 analysis

############################################################

#

# This performs an analysis on the GeneLogic Dilution data

# set

#

# As this analysis is similar to the U133 and U95 analyses,

# only differences between the analyses will be highlighted.

#

############################################################



www.manaraa.com

319

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,
5,23,6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,

25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike

small.fnames <- fnames
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# These are the categories (experiment numbers) for the

# comparisons. Note that only experiments 9 through 12 and

# experiment 14 have a sufficient number of chips for

# comparisons using all algorithms. Thus, the baseline

# condition will be experiment 9. All experiments in the

# list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3) ,13,13,14,14,14)
cat.names <- unique(category[category > 9])

cel <- ReadAffy(filenames=small.fnames)
eset <- rma(cel)
rma.exprs <- exprs(eset)

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {

data <- cbind(rma.exprs[,category==9],rma.exprs[,
category==cat.names[i]])

compare <- c(rep(0,sum(as.integer(category==9))),rep(1,
sum(as.integer(category==cat.names[i]))))

t.df<-apply(data,1,df,compare=compare)
ttest.rma <- mt.teststat(data,compare)
rawp0.rma <- 2*(1-pt(abs(ttest.rma),t.df))
abs.score <- abs(rawp0.rma)
gn <- geneNames(cel)
index <- order(abs.score ,decreasing=TRUE)

ranking <- rank(abs.score ,ties.method="min")
ranking <- max(ranking) - ranking + 1
ranking <- rep(1:length(unique(ranking)),times=
as.vector(table(ranking)))

names(ranking) <- gn[index]

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,score=abs.score[index])

outfile <- paste("RMAFoldOverallGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

posindex <- (abs.score <= 0.001)
small.count <- sum(!is.na(match(gn[posindex], spike.names)))
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large.count <- sum(!is.na(match(gn[posindex],
expanded.spike)))

truepos <- large.count
falsepos <- sum(posindex) - large.count
falseneg <- num.large - large.count
trueneg <- (length(abs.score) - sum(posindex)) - falseneg

results <- data.frame(iteration=i,truepos,falsepos ,trueneg,
falseneg)

outfile <- paste("RMAFoldCountGDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RMAFoldRankGDilution.csv",sep="")
results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of GeneLogic Dilution Analysis
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A.7 RVM Analysis of Spike-In Datasets

############################################################

#

# Program Name: RMAAnalysis.R

# Author: Richard Kennedy

# Date: 12/21/2007
#

# Purpose: This program performs an automated analysis on

# several sets of data using the RMA algorithm as the

# expression summary measure.

#

# Description: This program analyzes three separate

# datasets, the Affymetrix U95 and U133 Latin Square and the

# GeneLogic Dilution data. For each dataset, the

# appropriate data files are read and the RMA expression

# summary computed. The RMA values are then compared using

# multiple t-tests to give measures of significance for

# differential gene expression. One data file is created

# showing the p-values of the t-tests for all of the

# probesets on the chip, in increasing order (or decreasing

# order of significance); one data file gives the number of

# spike-in probes (from both the original Affymetrix list

# and the expanded list of McGee et al.) that are highly

# ranked; and one data file shows the actual rank based on

# the p-values versus the expected rank based on the

# concentration fold-change from the spike-in data.

# Although similar, separate computation routines are used

# for the Affymetrix U133 Latin Square, Affymetrix U95 Latin

# Square, and GeneLogic Dilution datasets due to slight

# differences in the analyses and for better readability.

#

############################################################

# Load the affy library. This is a standard library

# available through Bioconductor , which implements the

# functions for reading CEL files

library(affy)

# Load the nlme library. This is a standard library

# available through CRAN, which implements the glsfit

# function for generalized least squares

library(nlme)
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# This function implements the matrix square root.

# Input: x - a p x p dimensional matrix for which the

# square root is desired.

# Output: A p x p dimensional matrix representing

# the matrix square root of the input.

msqrt <- function(x) {

# Find the eigen decomposition of the matrix

eig <- eigen(x)
eigvec <- eig$vectors

# The square root of the matrix is found by creating

# a diagonal matrix of the square roots of the eigenvalues ,

# then pre- and post- multiplying this by the eigenvectors

result <- eigvec %*% diag(sqrt(eig$values)) %*% t(eigvec)

return(result)
}

# This function implements the logaritm of the multivariate

# gamma function. The logarithm of the multivariate gamma

# function, rather than the function value itself, is

# returned due to the magnitude of the numbers involved.

# Formulae for the multivariate gamma function are given in

# a number of sources, e.g., Muirhead pp. 61-62.

# Input: p - rank of the matrices over whose set the

# multivariate gamma integral is being evaluated

# a - degrees of freedom

# Output: A scalar containing the value of the multivariate

# gamma function for the specified matrix rank

mvlgamma <- function(p,a) {
result <- (p*(p-1)/4)*log(pi) + sum(lgamma(a-((1:p)-1)/2))
return(result)

}

# This function implements the logarithm of the singular

# generalized multivariate beta type II density for a

# specified observation point. If the density cannot be

# computed, an infinite value is returned so that this point

# will be avoided in the minimization process. The

# logarithm is used again due to the magnitude of the

# numbers involved. The distribution function used is given

# in a variety of sources, e.g., Srivastava (2003), p. 1553.

# Input: x - a p x p matrix representing the observed value

# from the multivariate beta distribution
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# pval - size of the observed value matrix, which is

# assumed to be singular

# n1, n2 - degrees of freedom (for the "numerator"

# and "denominator" matrices respectively , if

# considering the multivariate beta as a product

# of two Wishart distributions)

# omega - the scale parameter matrix

# Output: A scalar containing the value of the generalized

# multivariate beta type II density at the

# observed value x

ldmvbeta <- function(x,pval,n1,n2,omega) {

# Obtain the spectral decomposition of x

x.eigen <- eigen(x,only.values=TRUE)

# Since the determinant of x does not exist, the singular

# multivariate beta type II distribution uses the product

# of the first n1 eigenvalues , assuming rank(x) = n1

determ <- prod(x.eigen$values[1:min(n1,pval)])

# If the parameter values are not valid for calculating the

# logarithms in the density - which occurs if the product of

# the first n1 eigenvalues is negative or the determinant of

# I + Omega * x is negative - then return infinity, the
# largest possible value. This will keep the point from

# being used in the minimization process

if ((determ < 0) | (det(diag(pval) + omega %*% x) < 0)) {
result <- Inf

} else {

# Otherwise , return the value of the density at the

# specified point

result <- ((n1*n1 - n1*pval)/2) * log(pi) +
mvlgamma(pval,(n1+n2)/2) - mvlgamma(n1,n1/2) -
mvlgamma(pval,n2/2) + (n1/2) * log(det(omega)) +
((n1-pval-1)/2)*log(determ) - ((n1+n2)/2) *
log(det(diag(pval) + omega %*% x))

}

return(result)
}

# This function implements the logarithm of the multivariate

# beta likelihood , which computes the likelihood of a series

# of observations , with each observation having a common

# multivariate beta distribution.



www.manaraa.com

325

# Input: x - a vector of the parameters to be optimized.

# The first element is the degrees of freedom

# for the inverse Wishart prior and the second

# and third elements are used for constructing

# the matrix parameter for the prior. The

# second element is used for the diagonal

# element of the compound symmetric matrix

# parameter and the third is used for the off-

# diagonal elements.

# pval - the dimension p of a single p x p

# observation matrix

# mdf - the degrees of freedom for the comparison

# being conducted , i.e. n-k

# msigmahat - a matrix of observations for which the

# likelihood is desired. Each row is a single

# observation matrix, which has been vectorized

# from a p x p matrix to a pˆ2 x 1 vector. Thus

# the number of rows in x also equals the number

# of observations.

# const - a vector of constants passed to the

# function. This is not used in the current

# implementation , but may be used in future

# versions to fix certain parameters to be

# constants rather than optimized.

# Output:

mvbetalik <- function(x,pval,mdf,msigmahat ,const) {

# first make a copy of the scalar parameter of the prior,

# since R uses a form of passing by reference

esta <- x[1]

# Now create the compound symmetric matrix for the matrix

# parameter of the prior. Copy the second element of the

# parameter vector to the diagonal elements of the matrix,

# and the third element to the off-diagonal elements.

estb <- diag(x[2],pval,pval)
estb[upper.tri(estb)] <- x[3]
estb[lower.tri(estb)] <- x[3]

# Check whether the parameters are valid for the

# multivariate beta density, with the prior being

# full rank. The following three conditions must be met:

# (1) the degrees of freedom esta for the prior must be

# greater than or equal to the dimension of the matrix

# parameter for the prior, which is equal to pval.
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# (2) The determinant of the matrix parameter must be

# nonzero, signifying full rank.

# (3) The eigenvalues of the matrix parameter must be

# positive, signifying positive definiteness.

# If the parameters are not valid, the likelihood is set

# to infinity so that these parameters will not be

# considered minimized.

if ((esta < pval) | (det(estb) == 0) |
any(eigen(estb,only.values=TRUE)$values <= 0)) {
result <- Inf

} else {

# The parameters are valid. First, find the matrix square

# root of the matrix parameter for use in later

# calculations.

estbhalf <- msqrt(estb)

# Iterate over all observations to find the likelihood with

# the current values of the parameters being optimized.

# Since the log likelihood is used, the total likelihood is

# the sum of the likelihoods for the individual obserations.

estlik <- rep(0,nrow(msigmahat))
for (i in 1:nrow(msigmahat)) {

# Get the value of the current observation and compute

# the likelihood of this one observation using the current

# value of the parameters

onesigma <- matrix(data=msigmahat[i,],ncol=pval,
nrow=pval)

estlik[i] <- ldmvbeta(x=(esta+pval-1)*estbhalf %*%
onesigma %*% t(estbhalf),m=pval,n1=mdf,n2=
esta+pval-1, omega=diag(mdf/(esta+pval-1),pval,
pval))

# Note that it is (a+p-1) * sqrt(B) * Sn * sqrt(B) which
# follows the multivariate F distribution , while the data

# msigmahat are for Sn only. The likelihood for Sn can be

# obtained by multiplying by the Jacobian

# det((a+p-1) * B) ˆ ((p+1)/2)
# or by adding ((p+1)/2) * log(det(a+p-1) * B) to the log
# likelihood. This is _not_ described in the Wright and
# Simon article but is contained in their code for the

# univariate RVM method.

estlik[i] <- estlik[i] + (pval+1)/2 *
log(det((esta+pval-1)* estb))
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}

# If any of the individual likelihoods is infinite (i.e. not

# valid), then return a result of infinity. Otherwise the

# total likelihood is the sum of the individual likelihoods

if (all(is.finite(estlik))) {
result <- sum(-estlik)

} else {
result <- Inf

}

}

return(result)
}

# End of declared functions

############################################################

#

# This performs an analysis of the Affymetrix U133 spike-in

# data set

#

############################################################

# These are the filenames , which are stored in order of the

# ASCII collating sequence, as in the directory listing.

fnames <- c("12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt10_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt10_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt11_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt11_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt12_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt12_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt13_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt13_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt14_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt14_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt1_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt1_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt2_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt2_R2.CEL",
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"12_13_02_U133A_Mer_Latin_Square_Expt2_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt3_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt3_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt4_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt4_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt5_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt5_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt6_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt6_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt7_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt7_R3.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R1.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt8_R2.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt8_R3.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R1.CEL",

"12_13_02_U133A_Mer_Latin_Square_Expt9_R2.CEL",
"12_13_02_U133A_Mer_Latin_Square_Expt9_R3.CEL")

# Put the filenames in numerical order

fnames <- fnames[c(16:42,1:15)]

# These are the names of the spiked-in clones for the

# original 42 probes reported by Affymetrix. These are in

# the order given in the Affymetrix descriptor file included

# with the dataseta. Note that there are 3 clones in each

# group of clones spiked in at the same concentration for a

# given experiment (see the Affymetrix descriptor file for

# additional information).

spike.names <- c("203508_at", "204563_at", "204513_s_at",
"204205_at", "204959_at", "207655_s_at", "204836_at",
"205291_at", "209795_at", "207777_s_at", "204912_at",
"205569_at", "207160_at", "205692_s_at", "212827_at",
"209606_at", "205267_at", "204417_at", "205398_s_at",
"209734_at", "209354_at", "206060_s_at", "205790_at",
"200665_s_at", "207641_at", "207540_s_at", "204430_s_at",
"203471_s_at", "204951_at", "207968_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at", "AFFX-DapX-3_at", "AFFX-LysX-3_at",
"AFFX-PheX-3_at", "AFFX-ThrX-3_at")
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# These are the concentration data for the clones in each

# experiment. These are ordered across columns by clone

# group and across rows by experiment (or chip group).

spike.conc <- matrix(data=
c(0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,
0.125,0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,

0.25,0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,

0.5,1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,

1,2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,

2,4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,

4,8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,

8,16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,

16,32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,

32,64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,

64,128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,

128,256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,

256,512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,

512,0,0.125,0.25,0.5,1,2,4,8,16,32,64,128,256), nrow=14,
byrow=TRUE)

# These are the group numbers for each of the spiked-in

# clones given in the spike.names variable

spike.group <- rep(1:14,each=3)
names(spike.group) <- spike.names

# These are the names of the spiked-in clones for the

# expanded set of 64 probes reported by McGee et al. These

# are in the order given in their article and the

# supplemental files. Note that there are no longer 3

# clones in each group when using the expanded set.

expanded.spike <- c("200665_s_at", "203471_s_at", "203508_at",
"204205_at", "204417_at", "204430_s_at", "204513_s_at",
"204563_at", "204836_at", "204912_at", "204951_at",
"204959_at", "205267_at", "205291_at", "205398_s_at",
"205569_at", "205692_s_at", "205790_at", "206060_s_at",
"207160_at", "207540_s_at", "207641_at", "207655_s_at",
"207777_s_at", "207968_s_at", "208010_s_at", "209354_at",
"209374_s_at", "209606_at", "209734_at", "209795_at",
"212827_at", "AFFX-DapX-3_at", "AFFX-DapX-5_at",
"AFFX-DapX-M_at", "AFFX-LysX-3_at", "AFFX-LysX-5_at",
"AFFX-LysX-M_at", "AFFX-PheX-3_at", "AFFX-PheX-5_at",
"AFFX-PheX-M_at", "AFFX-ThrX-3_at", "AFFX-ThrX-5_at",
"AFFX-ThrX-M_at", "AFFX-r2-Bs-dap-3_at",
"AFFX-r2-Bs-dap-5_at", "AFFX-r2-Bs-dap-M_at",
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"AFFX-r2-Bs-lys-3_at", "AFFX-r2-Bs-lys-5_at",
"AFFX-r2-Bs-lys-M_at", "AFFX-r2-Bs-phe-3_at",
"AFFX-r2-Bs-phe-5_at", "AFFX-r2-Bs-phe-M_at",
"AFFX-r2-Bs-thr-3_s_at", "AFFX-r2-Bs-thr-5_s_at",
"AFFX-r2-Bs-thr-M_s_at", "AFFX-r2-TagA_at",
"AFFX-r2-TagB_at", "AFFX-r2-TagC_at", "AFFX-r2-TagD_at",
"AFFX-r2-TagE_at", "AFFX-r2-TagF_at", "AFFX-r2-TagG_at",
"AFFX-r2-TagH_at")

# These are the group numbers for each of the spiked-in

# clones given in the expanded.spike variable. Positive

# numbers denote the original 42 clones reported by

# Affymetrix , negative numbers the supplemental 22 clones

# given by McGee et al., to facilitate separate analyses if

# necessary.

expanded.group <- c(8,10,1,2,6,9,1,1,3,4,10,2,6,3,7,4,5,8,8,
5,9,9,2,4,10,-8,7,-5,6,7,3,5,13,-13,-13,14,-14,-14,14,-14,

-14,14,-14,-14,-13,-13,-13,-14,-14,-14,-14,-14,-14,-14,-14,

-14,11,11,11,12,12,12,13,13)

names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) to which

# each of the chips belongs

category <- rep(1:14,each=3)

# These are the categories (experiment numbers) for the

# comparisons. By default, the baseline condition will be

# experiment 1. All experiments in the list will be

# compared to the baseline in turn

cat.names <- unique(category[category!=1])

# This is a list of the filenames of the CEL files for this

# analysis. A separate variable is used to facilitate

# subanalyses if necessary.

small.fnames <- fnames

# These are the number of probes in the expanded and

# original list of spiked-in clones.

num.large <- 64
num.small <- 42

# loop through the list of experiments for comparison

for (i in 1:length(cat.names)) {

# This is a list of the filenames of the CEL files for this
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# analysis. A separate variable is used to facilitate

# subanalyses if necessary.

index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]

# get the expression summary data for the comparison

data <- ReadAffy(filenames=small.fnames)

# construct the comparison vector, used in building the

# design matrix for the glsfit function

compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

# Initialize vectors that will be used for storing the RVM

# chi-square and p values

abs.score <- NULL
all.lambda <- NULL
all.chival <- NULL

# For the Affymetrix U133 chip, the vast majority of the

# probesets contain 11 probe pairs each. Obtain this list

# of probesets and use it for the estimation of the

# parameters of the prior.

p <- 11
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]

# The list of probesets is a vector of lists, with each list

# containing the probe IDs within the probeset. Convert

# this into a vector of probe IDs for construction of the

# linear model and model fitting.

upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)

# Initialize matrices for storing the residual sums of

# squares from the full (ss-hat) and reduced (ss-hat-hat)

# models

ssfull <- matrix(data=0,nrow=length(pmidx), ncol= p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx), ncol= p*p)

# Get the intensity data and log2 transform it

intens <- log2(intensity(data))
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# Loop through each probeset in the list of size 11

# probesets

for (j in 1:length(pmidx)) {

# Get the list of probe IDs for the current probeset

oneset <- pmidx[j]
uoneset <- unlist(oneset)

# Get the corresponding intensities and vectorize them

# for model fitting

oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)

# Construct the design matrix with designations for

# treatment group (0 for baseline, 1 for experimental ,

# derived from the compare vector), chip (numbered 1

# through the number of chips), probeset (which is set to 1 #

since the fitting is done separately for each probeset),

# and probe (numbered 1 through 11).

treat <- as.factor(rep(compare,each= nrow(oneintens)))
chip <- as.factor(rep(1:length(compare), each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))

# Combine the intensity data and design matrix into a

# single data frame for model fitting

affydata <- data.frame(y,treat,chip,probeset, probe)

# Fit the full model with treatment and probe effects

glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

# Get the fitted values

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)

# Calculate the residual sums of squares for the current

# probeset, which is vectorized and stored as a row in the

# ssfull matrix

ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)
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ssfull[j,] <- as.vector(ss)

# Fit the reduced model with only probe effects

glsfit <- gls(y ˜ probe, correlation = corCompSymm(form
= ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

# Get the fitted values

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)

# Calculate the residual sums of squares, which is

# vectorized and stored as a row in the ssreduced matrix

ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

# Calculate the residual degrees of freedom

resdf <- (length(compare) - length(unique(compare)))

# Estimate the error (sigma) matrix, which is the residual

# sums of squares divided by the residual degrees of freedom

# using the full model

sigmahat <- ssfull/resdf

# Calculate the average of the estimates for sigma, which

# will be used as the starting value for optimizing the

# matrix parameter of the prior

meansigma <- colMeans(sigmahat)

# Optimize using the optim function to obtain maximum

# likelihood estimates of the parameters

startvals <- c(p+1,meansigma[1],meansigma[2])
optimresult <- optim(par=startvals ,fn=mvbetalik ,method=
"Nelder-Mead",pval=p,mdf=resdf,msigmahat=sigmahat,

const=c(10,2,3),control=list(maxit=1000))

# Give warning messages if the optimization algorithm did

# not converge, but proceed with the likelihood ratio test

if (optimresult$convergence !=0 ) {
writeLines(sprintf("Problems with convergence in

iteration %i",i))

}
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if (optimresult$convergence == 1) {
writeLines("Maximum number of iterations reached,

consider increasing")

}

# Get the maximum likelihood estimates for the parameters of

# the prior

result <- optimresult$par
aval <- result[1]
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]

# Compute the inverse of the matrix parameter , which will be

# used to adjust the residual sums of squares in calculating

# the value of the likelihood ratio test

bvec <- as.vector(solve(bmat))

# Initialize the vectors for showing the the ratio of

# determinants for the full and reduced models (lambda),

# the chi-square value (testval), and the p-value (score)

lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0, -(resdf+
aval-p-1) * log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval,df=4))

# Write out the results for this probeset for later use

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,"FoldOverallU133.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))
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names(score) <- gn

abs.score <- score
all.lambda <- lambda
all.testval <- testval

# Repeat the calculations for the probesets with 20 probes

# and the probeset with 16 probes. In these cases, there

# are not enough probesets to obtain an accurate estimate of #

the prior through fitting the multivariate beta

# distribution. However, assuming the probesets with 11

# probes are representative of the remaining probes, the

# parameter estimates from the previous step can be used in

# constructing the estimates of the prior for the probesets

# with 20 and 16 probes

for (p in c(20,16)) {
aval <- p
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol=p*p)

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each=
nrow(oneintens)))

chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset, probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
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method="ML",control=glsControl(opt="optim"))
yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+
aval-p-1) * log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval, df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,"FoldOverallU133.csv", sep="")
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write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- c(abs.score ,score)
all.lambda <- c(all.lambda ,lambda)
all.testval <- c(all.testval ,testval)

}

# rank the scores in decreasing order, with ties being

# assigned rank equal to the smallest rank of the group of

# ties

index <- order(abs.score ,decreasing=FALSE)
ranking <- rank(abs.score ,ties.method="min")[index]
gn <- names(abs.score)

# create a data frame with the probeset (gene) names, rank,

# and score in order of increasing p-values

results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,testval=all.testval[index],
score=abs.score[index])

outfile <- paste("RVMFoldOverallU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# count the number of spike-in probes ranked in the top 42

# (for the original list) or top 64 (for the expanded list)

# of probesets

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

large.count <- sum(!is.na(match(names(ranking)[1:
num.large],expanded.spike)))

results <- data.frame(iteration=i,small.count , large.count)
outfile <- paste("RVMFoldCountU133.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

# create a data frame with the expected rank (based on fold

# change of the spike-in concentration) of the expanded list

# of spike-in probesets to compare to the actual rank (based

# on the S-Score values)

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RVMFoldRankU133.csv",sep="")
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results <- data.frame(name=expanded.spike ,iteration=
rep(i,length(expanded.spike)),expectedrank=
fold.rank[abs(expanded.group[expanded.spike])],
actualrank=ranking[expanded.spike])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U133 Analysis

############################################################

#

# This performs an analysis of the Affymetrix U95 spike-in

# data set

#

# As this analysis is similar to the U133 analysis, only

# differences between the analyses will be highlighted.

#

############################################################

fnames <- c("1521a99hpp_av06.CEL", "1521b99hpp_av06.CEL",
"1521c99hpp_av06.CEL", "1521d99hpp_av06.CEL",
"1521e99hpp_av06.CEL", "1521f99hpp_av06.CEL",
"1521g99hpp_av06.CEL", "1521h99hpp_av06.CEL",
"1521i99hpp_av06.CEL", "1521j99hpp_av06.CEL",
"1521k99hpp_av06.CEL", "1521l99hpp_av06r.CEL",
"1521m99hpp_av06.CEL", "1521n99hpp_av06.CEL",
"1521o99hpp_av06.CEL", "1521p99hpp_av06.CEL",
"1521q99hpp_av06.CEL", "1521r99hpp_av06.CEL",
"1521s99hpp_av06.CEL", "1521t99hpp_av06.CEL",
"1532a99hpp_av04.CEL", "1532b99hpp_av04.CEL",
"1532c99hpp_av04.CEL", "1532d99hpp_av04.CEL",
"1532e99hpp_av04.CEL", "1532f99hpp_av04.CEL",
"1532g99hpp_av04.CEL", "1532h99hpp_av04.CEL",
"1532i99hpp_av04.CEL", "1532j99hpp_av04.CEL",
"1532k99hpp_av04.CEL", "1532l99hpp_av04.CEL",
"1532m99hpp_av04.CEL", "1532n99hpp_av04.CEL",
"1532o99hpp_av04.CEL", "1532p99hpp_av04.CEL",
"1532q99hpp_av04.CEL", "1532r99hpp_av04.CEL",
"1532s99hpp_av04.CEL", "1532t99hpp_av04r.CEL",
"2353a99hpp_av08.CEL", "2353b99hpp_av08r.CEL",
"2353d99hpp_av08.CEL", "2353e99hpp_av08.CEL",
"2353f99hpp_av08.CEL", "2353g99hpp_av08.CEL",
"2353h99hpp_av08.CEL", "2353i99hpp_av08.CEL",
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"2353j99hpp_av08.CEL", "2353k99hpp_av08.CEL",
"2353l99hpp_av08.CEL", "2353m99hpp_av08.CEL",
"2353n99hpp_av08.CEL", "2353o99hpp_av08.CEL",
"2353p99hpp_av08.CEL", "2353q99hpp_av08.CEL",
"2353r99hpp_av08.CEL", "2353s99hpp_av08.CEL",
"2353t99hpp_av08.CEL")

spike.names <- c("37777_at", "684_at", "1597_at", "38734_at",
"39058_at", "36311_at", "36889_at", "1024_at", "36202_at",
"36085_at", "40322_at", "407_at", "1091_at", "1708_at")

spike.conc <- matrix(data=
c(0,0.25,0.5,1,2,4,8,16,32,64,128,0,512,1024,
0.25,0.5,1,2,4,8,16,32,64,128,256,0.25,1024,0,

0.5,1,2,4,8,16,32,64,128,256,512,0.5,0,0.25,

1,2,4,8,16,32,64,128,256,512,1024,1,0.25,0.5,

2,4,8,16,32,64,128,256,512,1024,0,2,0.5,1,

4,8,16,32,64,128,256,512,1024,0,0.25,4,1,2,

8,16,32,64,128,256,512,1024,0,0.25,0.5,8,2,4,

16,32,64,128,256,512,1024,0,0.25,0.5,1,16,4,8,

32,64,128,256,512,1024,0,0.25,0.5,1,2,32,8,16,

64,128,256,512,1024,0,0.25,0.5,1,2,4,64,16,32,

128,256,512,1024,0,0.25,0.5,1,2,4,8,128,32,64,

256,512,1024,0,0.25,0.5,1,2,4,8,16,256,64,128,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

512,1024,0,0.25,0.5,1,2,4,8,16,32,512,128,256,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512,

1024,0,0.25,0.5,1,2,4,8,16,32,64,1024,256,512), ncol=14,
byrow=TRUE)

spike.group <- 1:14
names(spike.group) <- spike.names

# These are the categories (experiment numbers) for the

# comparisons. Note that one chip in Experiment 3 of the

# U95 dataset did not hybridize properly, so that there are

# only 2 chips in this comparison rather than 3. Though

# not originally intended, this allows the assessment of the

# algorithms when differing numbers of chips are compared.

category <- c(1:20,1:20,(1:20)[-3])
cat.names <- unique(category[category!=1])
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num.large <- 14
num.small <- 14

for (i in 1:length(cat.names)) {
index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

abs.score <- NULL
all.lambda <- NULL
all.chival <- NULL

# For the Affymetrix U95 chip, the vast majority of

# probesets have 16 probes. Use the list of probesets

# having 16 probes for fitting the multivariate beta

# distribution and obtaining maximum likelihood estimates

# of the parameters for the prior

p <- 16
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol= p*p)
intens <- log2(intensity(data))

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each= nrow(oneintens)))
chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset, probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
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method="ML",control=glsControl(opt="optim"))
yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation = corCompSymm(form
= ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

startvals <- c(p+1,meansigma[1],meansigma[2])
optimresult <- optim(par=startvals ,fn=mvbetalik ,method=
"Nelder-Mead",pval=p,mdf=resdf,msigmahat=sigmahat,

const=c(10,2,3),control=list(maxit=1000))

if (optimresult$convergence !=0 ) {
writeLines(sprintf("Problems with convergence in

iteration %i",i))

}

if (optimresult$convergence == 1) {
writeLines("Maximum number of iterations reached,

consider increasing")

}

result <- optimresult$par
aval <- result[1]
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
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sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+ aval-p-1)
* log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval,df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,"FoldOverallU95.csv", sep="")
write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- score
all.lambda <- lambda
all.testval <- testval

# For the Affymetrix U95 chip, the number of probesets with

# 13, 14, 15, and 20 probes per probeset are generally

# sufficient for model fitting of the intensities , though

# not sufficiently large for estimating the values of the

# prior. Use the values of the prior from the previous step

# to obtain the likelihood ratio test statistics for these

# probesets.

for (p in c(13,14,15,20)) {
aval <- p
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
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ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol= p*p)

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each=
nrow(oneintens)))

chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset , probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced



www.manaraa.com

344

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+
aval-p-1) * log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval, df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,"FoldOverallU95.csv", sep="")
write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- c(abs.score ,score)
all.lambda <- c(all.lambda ,lambda)
all.testval <- c(all.testval ,testval)

}

index <- order(abs.score ,decreasing=FALSE)
ranking <- rank(abs.score ,ties.method="min")[index]
gn <- names(abs.score)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,testval=all.testval[index],
score=abs.score[index])

outfile <- paste("RVMFoldOverallU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("RVMFoldCountU95.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RVMFoldRankU95.csv",sep="")
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results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[abs(spike.group[spike.names])],actualrank=
ranking[spike.names])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of Affymetrix U95 analysis

############################################################

#

# This performs an analysis on the GeneLogic Dilution data

# set

#

# As this analysis is similar to the U133 and U95 analyses,

# only differences between the analyses will be highlighted.

#

############################################################

fnames <- c("92453hgu95a11.cel", "92454hgu95a11.cel",
"92455hgu95a11.cel", "92456hgu95a11.cel",

"92457hgu95a11.cel", "92458hgu95a11.cel",

"92459hgu95a11.cel", "92460hgu95a11.cel",

"92461hgu95a11.cel", "92462hgu95a11.cel",

"92463hgu95a11.cel", "92464hgu95a11.cel",

"92465hgu95a11.cel", "92466hgu95a11.cel",

"92491hgu95a11.cel", "92492hgu95a11.cel",

"92493hgu95a11.cel", "92494hgu95a11.cel",

"92495hgu95a11.cel", "92496hgu95a11.cel",

"92497hgu95a11.cel", "92498hgu95a11.cel",

"92499hgu95a11.cel", "92500hgu95a11.cel",

"92501hgu95a11.cel", "92503hgu95a11.cel")

fnames <- fnames[c(14,15,16,17,18,19,20,1,21,2,3,22,4,5,23,
6,7,24,8,9,25,10,11,12,13,26)]

spike.conc <- matrix(data= c(0,0,0,0,0,0,0,0,0,0,
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,

1,1,1,1,1,1,1,1,1,1, 1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,

2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,

5,5,5,5,5,5,5,5,5,5,

12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,12.5,
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25,25,25,25,25,25,25,25,25,25, 50,50,50,50,50,50,50,50,50,50,

75,75,75,75,75,75,75,75,75,75,

100,100,100,100,100,100,100,100,100,100,

150,150,150,150,150,150,150,150,150,150), nrow=14,
byrow=TRUE)

spike.names <- c("AFFX-BioB-5_at", "AFFX-BioB-M_at",
"AFFX-BioB-3_at", "AFFX-BioC-5_at", "AFFX-BioC-3_at",
"AFFX-BioDn -3_at", "AFFX-DapX-5_at", "AFFX-DapX-M_at",
"AFFX-DapX-3_at", "AFFX-CreX-5_at")

spike.group <- 1:11
names(spike.group) <- spike.names

expanded.spike <- spike.names

expanded.group <- spike.group
names(expanded.group) <- expanded.spike

# These are the categories (experiment numbers) for the

# comparisons. Note that only experiments 9 through 12 and

# experiment 14 have a sufficient number of chips for

# comparisons using all algorithms. Thus, the baseline

# condition will be experiment 9. All experiments in the

# list will be compared to the baseline in turn.

category <- c(1,2,3,4,5,6,7,8,8,rep(9:12,each=3) ,13,13,14,14,14)
cat.names <- unique(category[category > 9])

num.large <- 10
num.small <- 10

for (i in 1:length(cat.names)) {
index <- category==1 | category==cat.names[i]
small.fnames <- fnames[index]
data <- ReadAffy(filenames=small.fnames)
compare <- c(rep(0,sum(as.integer(category==1))),rep(1,
sum(as.integer(category==cat.names[i]))))

abs.score <- NULL
all.lambda <- NULL
all.chival <- NULL
p <- 16
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
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pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol= p*p)
intens <- log2(intensity(data))

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each= nrow(oneintens)))
chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset, probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation = corCompSymm(form
= ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

startvals <- c(p+1,meansigma[1],meansigma[2])
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optimresult <- optim(par=startvals ,fn=mvbetalik ,
method="Nelder-Mead",pval=p,mdf=resdf,msigmahat=

sigmahat ,const=c(10,2,3),control=list(maxit=1000))

if (optimresult$convergence !=0 ) {
writeLines(sprintf("Problems with convergence in

iteration %i",i))

}

if (optimresult$convergence == 1) {
writeLines("Maximum number of iterations reached,

consider increasing")

}

result <- optimresult$par
aval <- result[1]
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+ aval-p-1)
* log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval,df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,
"FoldOverallGLDilution.csv",sep="")

write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- score
all.lambda <- lambda
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all.testval <- testval

for (p in c(13,14,15,20)) {
aval <- p
bmat <- diag(result[2],p,p)
bmat[upper.tri(bmat)] <- result[3]
bmat[lower.tri(bmat)] <- result[3]
bvec <- as.vector(solve(bmat))
pmidx <- pmindex(data)
pmidx.vec <- lapply(pmidx,length)
idx <- (pmidx.vec==p)
pmidx <- pmidx[idx]
upmidx <- unlist(pmidx)
pmidx.vec <- lapply(pmidx,length)
num <- rep(1:length(pmidx),pmidx.vec)
ssfull <- matrix(data=0,nrow=length(pmidx),ncol=p*p)
ssreduced <- matrix(data=0,nrow=length(pmidx),ncol= p*p)

for (j in 1:length(pmidx)) {
oneset <- pmidx[j]
uoneset <- unlist(oneset)
oneintens <- intens[uoneset ,]
y <- as.vector(oneintens)
treat <- as.factor(rep(compare,each=
nrow(oneintens)))

chip <- as.factor(rep(1:length(compare),each=
nrow(oneintens)))

probeset <- as.factor(rep(1,length(y)))
probe <- as.factor(rep(1:p,ncol(oneintens)))
affydata <- data.frame(y,treat,chip,probeset, probe)
glsfit <- gls(y ˜ treat + probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssfull[j,] <- as.vector(ss)
glsfit <- gls(y ˜ probe, correlation =
corCompSymm(form = ˜ 1 | chip), data=affydata,
method="ML",control=glsControl(opt="optim"))

yfitted <- matrix(data=fitted(glsfit),nrow=
nrow(oneintens),ncol=ncol(oneintens))

yfitted <- t(yfitted)
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ss <- t(t(oneintens) - yfitted) %*% (t(oneintens) -
yfitted)

ssreduced[j,] <- as.vector(ss)
}

resdf <- (length(compare) - length(unique(compare)))
sigmahat <- ssfull/resdf
meansigma <- colMeans(sigmahat)

lambda <- rep(0,length(pmidx))
testval <- rep(0,length(pmidx))
sshat <- ssfull
sshathat <- ssreduced

for (j in 1:length(pmidx)) {
sshat <- matrix(data=ssfull[j,] + bvec,p,p)
sshathat <- matrix(ssreduced[j,] + bvec,p,p)
lambda[j] <- det(sshat) / det(sshathat)
testval[j] <- ifelse(lambda[j]>0,-(resdf+
aval-p-1) * log(lambda[j]),0)

}

score <- ifelse(testval <0,1,1-pchisq(testval,df=4))

index <- order(testval,decreasing=TRUE)
gn <- names(pmidx)
results <- data.frame(name=gn[index],iteration=
rep(i,length(index)),lambda=lambda[index],testval=
testval[index],score=score[index])

outfile <- paste("RVM",p,
"FoldOverallGLDilution.csv",sep="")

write.table(results,file=outfile,sep=",",
row.names=FALSE,col.names=(i==1),append=(i!=1))

names(score) <- gn
abs.score <- c(abs.score ,score)
all.lambda <- c(all.lambda ,lambda)
all.testval <- c(all.testval ,testval)

}

index <- order(abs.score ,decreasing=FALSE)
ranking <- rank(abs.score ,ties.method="min")[index]
gn <- names(abs.score)
results <- data.frame(name=gn[index],iteration=rep(i,
length(index)),rank=ranking,testval=all.testval[index],
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score=abs.score[index])
outfile <- paste( "RVMFoldOverallGLDilution.csv", sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

small.count <- sum(!is.na(match(names(ranking)[1:
num.small],spike.names)))

results <- data.frame(iteration=i,small.count)
outfile <- paste("RVMFoldCountGLDilution.csv",sep="")
write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

fold.change <- spike.conc[i+1,] / spike.conc[1,]
fold.rank <- rank(fold.change ,ties.method="min")
fold.rank <- rep(length(unique(fold.rank)):1,times=
as.vector(table(fold.rank)))

outfile <- paste("RVMFoldRankGLDilution.csv",sep="")
results <- data.frame(name=spike.names ,iteration=rep(i,
length(spike.names)),expectedrank=
fold.rank[abs(spike.group[spike.names])],actualrank=
ranking[spike.names])

write.table(results,file=outfile,sep=",",row.names=
FALSE,col.names=(i==1),append=(i!=1))

}

# End of GeneLogic Dilution Analysis



www.manaraa.com

Appendix B
Quality Assessment Plots for All Datasets

352



www.manaraa.com

353

● ● ● ● ●

●
●

●
●

●

−1.5 −0.5 0.5 1.0 1.5

0
10

30
50

70

Chip 92466hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(a)

● ●
●

● ●
●

●

●

●

●

−1.5 −0.5 0.5 1.0 1.5
0

20
60

10
0

14
0

Chip 92491hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(b)

●

●
●

●
●

●

●
●

●
●

−1.5 −0.5 0.5 1.0 1.5

50
10

0
15

0

Chip 92492hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(c)

●

●

●

●
● ●

●

●
●

●

−1.5 −0.5 0.5 1.0 1.5

0
20

40
60

80
12

0

Chip 92493hgu95a11.cel

Normal Quantiles

In
te

ns
ity

(d)

Figure B.1: GeneLogic Dilution Quality for Experiments 1–4. Plots of the computed MAS5
intensity values versus theoretical normal quantiles for a subset of chips. All intensity values are
scaled to give a median intensity value of 100 for each chip.
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Figure B.1: GeneLogic Dilution Quality for Experiments 5–8.
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Figure B.1: GeneLogic Dilution Quality for Experiments 9–12.
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Figure B.1: GeneLogic Dilution Quality for Experiments 13–16.
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Figure B.1: GeneLogic Dilution Quality for Experiments 17–20.
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Figure B.1: GeneLogic Dilution Quality for Experiments 21–24.
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Figure B.1: GeneLogic Dilution Quality for Experiments 25–26.
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Figure B.2: Affymetrix U95 Latin Square Quality for Experiments 1–4. Plots of the computed
MAS5 intensity values versus concentration for a subset of chips. High-quality chips would be
expected to show a linear increase in intensity as concentration increases. All intensity values are
scaled to give a median intensity value of 100 for each chip.
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Figure B.2: Affymetrix U95 Latin Square Quality 5–8.
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Figure B.2: Affymetrix U95 Latin Square Quality for Experiments 9-12.
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Figure B.2: Affymetrix U95 Latin Square Quality for Experiments 13–16.
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Figure B.2: Affymetrix U95 Latin Square Quality for Experiments 17–20.
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Figure B.3: Affymetrix U133 Latin Square Quality for Experiments 1–4. Plots of the computed
MAS5 intensity values versus concentration for a subset of chips. High-quality chips would be
expected to show a linear increase in intensity as concentration increases. All intensity values are
scaled to give a median intensity value of 100 for each chip.
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Figure B.3: Affymetrix U133 Latin Square Quality for Experiments 5–8.
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Figure B.3: Affymetrix U133 Latin Square Quality for Experiments 9–12.
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Figure B.3: Affymetrix U133 Latin Square Quality for Experiments 13–14.
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Table C.3: Probesets Omitted from the Affymetrix U133 Latin Square Analysis
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